Yifeng Hu, Samuel Fortunato Yana Motta, Cheng-Min Yang
{"title":"Evaluation and development of flow condensation correlations using the data from low GWP refrigerants in an axial micro-fin aluminum tube","authors":"Yifeng Hu, Samuel Fortunato Yana Motta, Cheng-Min Yang","doi":"10.1016/j.ijrefrig.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>To mitigate global warming, the world is transitioning to refrigerants with low global warming potential (GWP). Supporting this shift requires a model that can accurately predict the heat transfer and pressure drop of new refrigerants, crucial for designing efficient heat exchangers. Existing models, however, are largely based on currently deployed refrigerants and primarily developed for unexpanded micro-fin tubes with spiral angles of 6° to 30°. Their applicability to new refrigerants, especially in expanded micro-fin tubes, is uncertain. This study assesses the performance of four well-known condensation models for six emerging refrigerants—R-32, R-454B, R-454C, R-455A, R-1234yf, and R-1234ze(E)—against experimental data. Initially, the Han and Lee (2005) model shows the best prediction accuracy with a mean absolute deviation (MAD) of 22.1 %. To enhance the accuracy of heat transfer models for new refrigerants and geometries with large temperature glides, two approaches are proposed. The first approach applies a simple correction factor, reducing the MAD of the Cavallini et al. (2009) model from 68.2 % to 15.4 %. The second approach uses the variable metric method for minimization, fitting new constants to the data. This optimization results in the Kedzierski and Goncalves (1997) model achieving the highest accuracy, with a MAD of 13.1 %. For pressure drop models, the Cavallini et al. (1997) model is the most accurate with a MAD of 6.4 %, followed by the Haraguchi et al. (1993) model with a MAD of 9.4 %. Due to its simplicity, the Haraguchi et al. (1993) model is a practical option for predicting frictional pressure drop.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 454-468"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003281","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To mitigate global warming, the world is transitioning to refrigerants with low global warming potential (GWP). Supporting this shift requires a model that can accurately predict the heat transfer and pressure drop of new refrigerants, crucial for designing efficient heat exchangers. Existing models, however, are largely based on currently deployed refrigerants and primarily developed for unexpanded micro-fin tubes with spiral angles of 6° to 30°. Their applicability to new refrigerants, especially in expanded micro-fin tubes, is uncertain. This study assesses the performance of four well-known condensation models for six emerging refrigerants—R-32, R-454B, R-454C, R-455A, R-1234yf, and R-1234ze(E)—against experimental data. Initially, the Han and Lee (2005) model shows the best prediction accuracy with a mean absolute deviation (MAD) of 22.1 %. To enhance the accuracy of heat transfer models for new refrigerants and geometries with large temperature glides, two approaches are proposed. The first approach applies a simple correction factor, reducing the MAD of the Cavallini et al. (2009) model from 68.2 % to 15.4 %. The second approach uses the variable metric method for minimization, fitting new constants to the data. This optimization results in the Kedzierski and Goncalves (1997) model achieving the highest accuracy, with a MAD of 13.1 %. For pressure drop models, the Cavallini et al. (1997) model is the most accurate with a MAD of 6.4 %, followed by the Haraguchi et al. (1993) model with a MAD of 9.4 %. Due to its simplicity, the Haraguchi et al. (1993) model is a practical option for predicting frictional pressure drop.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.