Qingfeng Jiang , Wenqing Duan , Huaibing Li , Hansheng Feng , Wu Du , Jiayang Gu
{"title":"Novel fuel-efficient cryogenic carbon capture system for the combustion exhaust of LNG-powered ships","authors":"Qingfeng Jiang , Wenqing Duan , Huaibing Li , Hansheng Feng , Wu Du , Jiayang Gu","doi":"10.1016/j.ijrefrig.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional carbon capture technologies such as alcohol-amine decarburization, membrane separation, etc., are difficult to be used to cope with carbon emissions for ships, due to the power-hungry combustion exhaust pressurization consumption, poor economic benefits of carbon capture, etc. This paper presents a novel cryogenic desublimation CO<sub>2</sub> capture system (CDCC) coupled with LNG cold energy for LNG-powered ships. The proposed system not only significantly reduces the energy consumption of exhaust gas boosting but also utilizes waste cold energy from the LNG fuel gas supply system (FGSS). This enables the CO<sub>2</sub> gas to condense and separate at low temperatures. Through simulation and parameter optimization, the CO<sub>2</sub> capture rate and purity of CO<sub>2</sub> product can reach 92.87 % and 96.49 % respectively, with an energy consumption of 5.72 MJ/kg. To evaluate the CDCC performance, the typical monoethanolamine chemical absorption process (MEA) under the same flue gas inlet conditions and the consistent CO<sub>2</sub> product outlet temperature and pressure is also simulated. Comparative simulation with the MEA process shows similar CO<sub>2</sub> capture rates (87.13 % for MEA and 87.18 % for CDCC), but MEA achieves higher product purity by 2.58 %. However, MEA exhibits significantly higher energy consumption (33.28 MJ/kg) compared to CDCC (5.90 MJ/kg). Investigation into process parameters, engine powers, and CO<sub>2</sub> product parameters demonstrates CDCC's robustness in energy consumption, capture rate, and purity. The proposed CDCC system is well-suited for LNG-powered ships, which can be attributed to atmospheric exhaust gas treatment and self-contained utilization of cold energy.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002962","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional carbon capture technologies such as alcohol-amine decarburization, membrane separation, etc., are difficult to be used to cope with carbon emissions for ships, due to the power-hungry combustion exhaust pressurization consumption, poor economic benefits of carbon capture, etc. This paper presents a novel cryogenic desublimation CO2 capture system (CDCC) coupled with LNG cold energy for LNG-powered ships. The proposed system not only significantly reduces the energy consumption of exhaust gas boosting but also utilizes waste cold energy from the LNG fuel gas supply system (FGSS). This enables the CO2 gas to condense and separate at low temperatures. Through simulation and parameter optimization, the CO2 capture rate and purity of CO2 product can reach 92.87 % and 96.49 % respectively, with an energy consumption of 5.72 MJ/kg. To evaluate the CDCC performance, the typical monoethanolamine chemical absorption process (MEA) under the same flue gas inlet conditions and the consistent CO2 product outlet temperature and pressure is also simulated. Comparative simulation with the MEA process shows similar CO2 capture rates (87.13 % for MEA and 87.18 % for CDCC), but MEA achieves higher product purity by 2.58 %. However, MEA exhibits significantly higher energy consumption (33.28 MJ/kg) compared to CDCC (5.90 MJ/kg). Investigation into process parameters, engine powers, and CO2 product parameters demonstrates CDCC's robustness in energy consumption, capture rate, and purity. The proposed CDCC system is well-suited for LNG-powered ships, which can be attributed to atmospheric exhaust gas treatment and self-contained utilization of cold energy.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.