{"title":"Seizing the opportunity of energy retrofitting of existing tunnels","authors":"S. De Feudis, A. Insana, M. Barla","doi":"10.1016/j.tust.2024.106109","DOIUrl":null,"url":null,"abstract":"<div><div>Energy tunnels have emerged as systems that can contribute to the production of clean, renewable thermal energy. Nevertheless, so far applications have been related almost exclusively to new tunnelling projects. Accordingly, no systematic methodologies for the heat exchange instrumentation of existing tunnels have been proposed up until now. Starting from the valuable experience gained from different energy tunnel testbeds worldwide, this paper proposes two approaches that would allow the thermal activation of the existing heritage of tunnels. Different solutions are conceived for both approaches to fit various existing tunnel decay contexts and diverse levels of refurbishment necessity. These are illustrated, outlining characteristics and advantages, describing expected installation details and issues and analysing the possibility of real implementations. The geothermal potential of such solutions is assessed through thermo-hydraulic numerical modelling. Finally, with the aim of investigating their economic attractiveness and profitability, a brief economic analysis is drawn up, considering the geothermal energy produced and the costs involved in installing and running the systems.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824005273","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Energy tunnels have emerged as systems that can contribute to the production of clean, renewable thermal energy. Nevertheless, so far applications have been related almost exclusively to new tunnelling projects. Accordingly, no systematic methodologies for the heat exchange instrumentation of existing tunnels have been proposed up until now. Starting from the valuable experience gained from different energy tunnel testbeds worldwide, this paper proposes two approaches that would allow the thermal activation of the existing heritage of tunnels. Different solutions are conceived for both approaches to fit various existing tunnel decay contexts and diverse levels of refurbishment necessity. These are illustrated, outlining characteristics and advantages, describing expected installation details and issues and analysing the possibility of real implementations. The geothermal potential of such solutions is assessed through thermo-hydraulic numerical modelling. Finally, with the aim of investigating their economic attractiveness and profitability, a brief economic analysis is drawn up, considering the geothermal energy produced and the costs involved in installing and running the systems.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.