{"title":"Cover crop and herbicides can control purple nutsedge (Cyperus rotundus L.) and increase crop yields in conservation agriculture-based crop rotations","authors":"C.P. Nath , Narendra Kumar , Asik Dutta , K.K. Hazra , C.S. Praharaj , Deepak Kumar , G.P. Dixit","doi":"10.1016/j.cropro.2024.106974","DOIUrl":null,"url":null,"abstract":"<div><div>Adoption of conservation agriculture (CA) practices can lead to the dominance of perennial weeds including purple nutsedge (<em>Cyperus rotundus</em> L.) in different agroecologies over time. Without effective management of this weed, successful adoption of CA in smallholder farming systems is rather unlikely. Therefore, we aimed to develop an integrated strategy for managing <em>C. rotundus</em> in CA-based crop rotations. This study encompassed a two-year (during 2020–21 and 2021–22) field experimentation at Kanpur, India with a split-plot design with three replications. The treatments included purple nutsedge management practices in main plot and crop rotations in sub-plot under CA platform (no-tilled with added crop residues). Six management options were adopted in the summer season (during April to June) as main plots that were super-imposed with two crop rotations such as pigeonpea (<em>Cajanus cajan</em> (L.) Huth) – wheat (<em>Triticum aestivum</em> L.) and pearlmillet (<em>Pennisetum glaucum</em> (L.) R.Br) – chickpea (<em>Cicer arietinum</em> L.) as sub-plot. Growing of cover crop Sesbania (<em>Sesbania aculeata</em> (Willd.) Pers.) during the summer season for 45 days followed by knockdown with 2,4-D 500 g a.i. Ha<sup>−1</sup> (cultural management; Sesbania+2,4-D) and/or summer irrigation followed by application of halosulfuron-methyl 70 g a.i. Ha<sup>−1</sup> at 20 days after irrigation (chemical management; halosulfuron-methyl) reduced the <em>C</em>. <em>rotundus</em> density by 37–42% and 23–64% over years, respectively, than conventional practice (ploughing during summer followed by irrigation and glyphosate 1.5 kg a.e. Ha<sup>−1</sup> application). Besides, these practices could decrease 25–27% total weed density (p < 0.05) than conventional practice (mean of years) in summer season. Importantly, these management practices had a carry-over effect on reduction in density of <em>C</em>. <em>rotundus</em> and total weeds of rainy and winter season crops. For instance, Sesbania +2,4-D and halosulfuron-methyl decreased 35% and 15% density of <em>C</em>. <em>rotundus,</em> respectively, during rainy season than conventional practice. Irrespective of crop rotations, Sesbania +2,4-D and halosulfuron-methyl decreased 30–40% density of <em>C. rotundus</em> (mean of years) in winter season than conventional practice (p < 0.05). A significant reduction in dry weight of <em>C. rotundus</em> was recorded under Sesbania +2,4-D and halosulfuron-methyl in summer season by 13–23%, rainy season by 23–29%, and winter season by 55–72% than conventional practice. Pearlmillet-chickpea rotation had a 10–35% lower infestation of <em>C. rotundus</em> than pigeonpea-wheat (p < 0.05). Management practices such as Sesbania +2,4-D and halosulfuron-methyl had higher system productivity by 15–19% in 2020–21 (p < 0.05), 5–7% in 2021–22 (p > 0.05), and 10–12% in average (p > 0.05) than conventional practice. Summer mungbean cultivation increased 45.2% and 10.1% density of <em>C</em>. <em>rotundus</em> in rainy season over Sesbania +2,4-D and halosulfuron-methyl in CA system, respectively (p < 0.05). Furthermore, the density of this weed was significantly higher under pigeonpea crop during rainy season by 41.4% than under pearlmillet crop (mean of years). Therefore, system-based approaches such as growing of cover crop Sesbania followed by knockdown with 2,4-D (Sesbania +2,4-D) and/or herbicide-based management through halosulfuron-methyl during summer season and subsequently recommended weed management practices in cropping systems (pearlmillet – chickpea and pigeonpea – wheat) can reduce the infestation of <em>C. rotundus</em> and total weeds in CA than conventional practice.</div></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":"187 ","pages":"Article 106974"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261219424004022","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Adoption of conservation agriculture (CA) practices can lead to the dominance of perennial weeds including purple nutsedge (Cyperus rotundus L.) in different agroecologies over time. Without effective management of this weed, successful adoption of CA in smallholder farming systems is rather unlikely. Therefore, we aimed to develop an integrated strategy for managing C. rotundus in CA-based crop rotations. This study encompassed a two-year (during 2020–21 and 2021–22) field experimentation at Kanpur, India with a split-plot design with three replications. The treatments included purple nutsedge management practices in main plot and crop rotations in sub-plot under CA platform (no-tilled with added crop residues). Six management options were adopted in the summer season (during April to June) as main plots that were super-imposed with two crop rotations such as pigeonpea (Cajanus cajan (L.) Huth) – wheat (Triticum aestivum L.) and pearlmillet (Pennisetum glaucum (L.) R.Br) – chickpea (Cicer arietinum L.) as sub-plot. Growing of cover crop Sesbania (Sesbania aculeata (Willd.) Pers.) during the summer season for 45 days followed by knockdown with 2,4-D 500 g a.i. Ha−1 (cultural management; Sesbania+2,4-D) and/or summer irrigation followed by application of halosulfuron-methyl 70 g a.i. Ha−1 at 20 days after irrigation (chemical management; halosulfuron-methyl) reduced the C. rotundus density by 37–42% and 23–64% over years, respectively, than conventional practice (ploughing during summer followed by irrigation and glyphosate 1.5 kg a.e. Ha−1 application). Besides, these practices could decrease 25–27% total weed density (p < 0.05) than conventional practice (mean of years) in summer season. Importantly, these management practices had a carry-over effect on reduction in density of C. rotundus and total weeds of rainy and winter season crops. For instance, Sesbania +2,4-D and halosulfuron-methyl decreased 35% and 15% density of C. rotundus, respectively, during rainy season than conventional practice. Irrespective of crop rotations, Sesbania +2,4-D and halosulfuron-methyl decreased 30–40% density of C. rotundus (mean of years) in winter season than conventional practice (p < 0.05). A significant reduction in dry weight of C. rotundus was recorded under Sesbania +2,4-D and halosulfuron-methyl in summer season by 13–23%, rainy season by 23–29%, and winter season by 55–72% than conventional practice. Pearlmillet-chickpea rotation had a 10–35% lower infestation of C. rotundus than pigeonpea-wheat (p < 0.05). Management practices such as Sesbania +2,4-D and halosulfuron-methyl had higher system productivity by 15–19% in 2020–21 (p < 0.05), 5–7% in 2021–22 (p > 0.05), and 10–12% in average (p > 0.05) than conventional practice. Summer mungbean cultivation increased 45.2% and 10.1% density of C. rotundus in rainy season over Sesbania +2,4-D and halosulfuron-methyl in CA system, respectively (p < 0.05). Furthermore, the density of this weed was significantly higher under pigeonpea crop during rainy season by 41.4% than under pearlmillet crop (mean of years). Therefore, system-based approaches such as growing of cover crop Sesbania followed by knockdown with 2,4-D (Sesbania +2,4-D) and/or herbicide-based management through halosulfuron-methyl during summer season and subsequently recommended weed management practices in cropping systems (pearlmillet – chickpea and pigeonpea – wheat) can reduce the infestation of C. rotundus and total weeds in CA than conventional practice.
期刊介绍:
The Editors of Crop Protection especially welcome papers describing an interdisciplinary approach showing how different control strategies can be integrated into practical pest management programs, covering high and low input agricultural systems worldwide. Crop Protection particularly emphasizes the practical aspects of control in the field and for protected crops, and includes work which may lead in the near future to more effective control. The journal does not duplicate the many existing excellent biological science journals, which deal mainly with the more fundamental aspects of plant pathology, applied zoology and weed science. Crop Protection covers all practical aspects of pest, disease and weed control, including the following topics:
-Abiotic damage-
Agronomic control methods-
Assessment of pest and disease damage-
Molecular methods for the detection and assessment of pests and diseases-
Biological control-
Biorational pesticides-
Control of animal pests of world crops-
Control of diseases of crop plants caused by microorganisms-
Control of weeds and integrated management-
Economic considerations-
Effects of plant growth regulators-
Environmental benefits of reduced pesticide use-
Environmental effects of pesticides-
Epidemiology of pests and diseases in relation to control-
GM Crops, and genetic engineering applications-
Importance and control of postharvest crop losses-
Integrated control-
Interrelationships and compatibility among different control strategies-
Invasive species as they relate to implications for crop protection-
Pesticide application methods-
Pest management-
Phytobiomes for pest and disease control-
Resistance management-
Sampling and monitoring schemes for diseases, nematodes, pests and weeds.