On perturbations for spectrum and singular value decompositions followed by deflation techniques

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Zekun Wang , Hongjia Chen , Zhongming Teng , Xiang Wang
{"title":"On perturbations for spectrum and singular value decompositions followed by deflation techniques","authors":"Zekun Wang ,&nbsp;Hongjia Chen ,&nbsp;Zhongming Teng ,&nbsp;Xiang Wang","doi":"10.1016/j.aml.2024.109332","DOIUrl":null,"url":null,"abstract":"<div><div>The calculation of the dominant eigenvalues of a symmetric matrix <span><math><mi>A</mi></math></span> together with its eigenvectors, followed by the calculation of the deflation of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>A</mi><mo>−</mo><mi>ρ</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>T</mi></mrow></msubsup></mrow></math></span> corresponds to one step of the Wielandt deflation technique, where <span><math><mi>ρ</mi></math></span> is a shift and <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> are eigenvectors of <span><math><mi>A</mi></math></span>. In this paper, we investigate how the eigenspace of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> changes when <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is perturbed to <span><math><mrow><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>A</mi><mo>−</mo><mi>ρ</mi><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi></mrow><mrow><mi>T</mi></mrow></msubsup></mrow></math></span>, where <span><math><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi></mrow></msub></math></span> are approximate eigenvectors of <span><math><mi>A</mi></math></span>. We establish the bounds for the angle of eigenspaces of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span> based on the Davis-Kahan theorem. Moreover, in the practical implementation for singular value decomposition, once one or several singular triplets converge to a preset accuracy, they should be deflated by <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>B</mi><mo>−</mo><mi>γ</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>H</mi></mrow></msubsup></mrow></math></span> with <span><math><mi>γ</mi></math></span> being a shift, <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> are singular vectors of <span><math><mi>B</mi></math></span>, so that they will not be re-computed. We investigate how the singular subspaces of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>B</mi><mo>−</mo><mi>γ</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>H</mi></mrow></msubsup></mrow></math></span> change when <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is perturbed to <span><math><mrow><msub><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>B</mi><mo>−</mo><mi>γ</mi><msub><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi></mrow><mrow><mi>H</mi></mrow></msubsup></mrow></math></span>, <span><math><msub><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi></mrow></msub></math></span> are approximate singular vectors of <span><math><mi>B</mi></math></span>. We also establish the bounds for the angle of singular subspaces of <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span> based on the Wedin theorem.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109332"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003525","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The calculation of the dominant eigenvalues of a symmetric matrix A together with its eigenvectors, followed by the calculation of the deflation of A1=AρUkUkT corresponds to one step of the Wielandt deflation technique, where ρ is a shift and Uk are eigenvectors of A. In this paper, we investigate how the eigenspace of A1 changes when A1 is perturbed to A˜1=AρU˜kU˜kT, where U˜k are approximate eigenvectors of A. We establish the bounds for the angle of eigenspaces of A1 and A˜1 based on the Davis-Kahan theorem. Moreover, in the practical implementation for singular value decomposition, once one or several singular triplets converge to a preset accuracy, they should be deflated by B1=BγWkVkH with γ being a shift, Wk and Vk are singular vectors of B, so that they will not be re-computed. We investigate how the singular subspaces of B1=BγWkVkH change when B1 is perturbed to B˜1=BγW˜kV˜kH, W˜k and V˜k are approximate singular vectors of B. We also establish the bounds for the angle of singular subspaces of B1 and B˜1 based on the Wedin theorem.
关于频谱扰动和奇异值分解后的通缩技术
计算对称矩阵 A 的主特征值及其特征向量,然后计算 A1=A-ρUkUkT 的放缩,相当于维兰德放缩技术的一个步骤,其中 ρ 是位移,Uk 是 A 的特征向量。本文研究了当 A1 被扰动为 A˜1=A-ρU˜kU˜kT 时,A1 的特征空间如何变化,其中 U˜k 是 A 的近似特征向量。此外,在奇异值分解的实际应用中,一旦一个或几个奇异三元组收敛到预设精度,就应按 B1=B-γWkVkH 放空,其中γ 是移位,Wk 和 Vk 是 B 的奇异向量,这样它们就不会被重新计算。我们研究当 B1 被扰动为 B˜1=B-γW˜kV˜kH 时,B1=B-γWkVkH 的奇异子空间如何变化,W˜k 和 V˜k 是 B 的近似奇异向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信