Orbital stability of solitary wave solutions of a Hamiltonian PDE arising in magma dynamics

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Aiyong Chen, Xiaokai He
{"title":"Orbital stability of solitary wave solutions of a Hamiltonian PDE arising in magma dynamics","authors":"Aiyong Chen,&nbsp;Xiaokai He","doi":"10.1016/j.aml.2024.109326","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a Hamiltonian PDE arising from a class of equations appearing in the study of magma dynamics in the Earth’s interior. Previously, it has been shown that the Hamiltonian PDE admits solitary wave solutions. Simpson et al. proved that the solitary wave solutions are orbitally stable for the case <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span>. We verify the stability criterion analytically for the case <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></math></span>. Our results answer partially an open question proposed by Simpson et al. (2008).</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109326"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592400346X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Hamiltonian PDE arising from a class of equations appearing in the study of magma dynamics in the Earth’s interior. Previously, it has been shown that the Hamiltonian PDE admits solitary wave solutions. Simpson et al. proved that the solitary wave solutions are orbitally stable for the case n=2. We verify the stability criterion analytically for the case n=3. Our results answer partially an open question proposed by Simpson et al. (2008).
岩浆动力学中出现的哈密顿 PDE 孤波解的轨道稳定性
我们考虑的是地球内部岩浆动力学研究中出现的一类方程中的哈密顿 PDE。此前已有研究表明,哈密顿 PDE 存在孤波解。Simpson 等人证明了孤波解在 n=2 的情况下是轨道稳定的。我们通过分析验证了 n=3 情况下的稳定性准则。我们的结果部分回答了辛普森等人(2008 年)提出的一个开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信