Existence and stability of steady states of reaction–diffusion equation with spatiotemporal memory

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Shu Li , Binxiang Dai , Hao Wang
{"title":"Existence and stability of steady states of reaction–diffusion equation with spatiotemporal memory","authors":"Shu Li ,&nbsp;Binxiang Dai ,&nbsp;Hao Wang","doi":"10.1016/j.aml.2024.109323","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on a reaction–diffusion equation with spatiotemporal memory and Dirichlet boundary condition. We prove the existence of positive steady-state solutions through local and global bifurcation theory and provide the conditions for the stability of positive steady-state solutions. Our general results are applied to a diffusive logistic population model with spatiotemporal memory.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109323"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003434","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on a reaction–diffusion equation with spatiotemporal memory and Dirichlet boundary condition. We prove the existence of positive steady-state solutions through local and global bifurcation theory and provide the conditions for the stability of positive steady-state solutions. Our general results are applied to a diffusive logistic population model with spatiotemporal memory.
具有时空记忆的反应扩散方程稳态的存在性和稳定性
本文主要研究具有时空记忆和迪里夏特边界条件的反应扩散方程。我们通过局部和全局分岔理论证明了正稳态解的存在,并提供了正稳态解的稳定性条件。我们的一般结果被应用于具有时空记忆的扩散对数模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信