Biva Gyawali , Ramtin Haghnazar , Pavan Akula , Kamran Alba , Vahid Nasir
{"title":"A review on 3D printing with clay and sawdust/natural fibers: Printability, rheology, properties, and applications","authors":"Biva Gyawali , Ramtin Haghnazar , Pavan Akula , Kamran Alba , Vahid Nasir","doi":"10.1016/j.rineng.2024.103024","DOIUrl":null,"url":null,"abstract":"<div><div>This review discusses the opportunities and challenges of 3D printing using clay and natural fibers with a focus on wood sawdust in direct ink writing (DIW) method. Using earthen and natural materials promotes sustainable and affordable construction. Additive manufacturing also offers low-cost and fast construction and facilitates the transition towards automated and customized practices. Considerations in preparing print slurry using clay and sawdust/natural fiber are presented. The key rheological tests and criteria to assess the printability and characteristics of fresh printing slurry are discussed. Printability of fresh slurry is explained with a focus on flowability, extrudability, and buildability. Additionally, the mechanical properties of 3D-printed clay composites reinforced with natural fibers are reviewed. The review shows the complex role of using wood sawdust and natural fiber in clay 3D printing. While such an addition may compromise the strength properties of clay composite, it improves the shrinkage and cracks following print task. The study concludes that post-printing performance shall be linked to proper design of print slurry via rheological characterization techniques. Further research is required to establish the fresh ink printability criteria. These criteria should account for rheology of fresh slurry, different loading scenarios of in-service printed structure, and geometrical complexities and requirements of final product. To fully leverage the power of 3D printing in customized fabrication and construction, additive manufacturing can be practiced by focusing on aesthetic and architectural design. Clay 3D printing can also be integrated with computational design to fabricate building structures with exterior (façade) and/or interior applications.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"24 ","pages":"Article 103024"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024012799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This review discusses the opportunities and challenges of 3D printing using clay and natural fibers with a focus on wood sawdust in direct ink writing (DIW) method. Using earthen and natural materials promotes sustainable and affordable construction. Additive manufacturing also offers low-cost and fast construction and facilitates the transition towards automated and customized practices. Considerations in preparing print slurry using clay and sawdust/natural fiber are presented. The key rheological tests and criteria to assess the printability and characteristics of fresh printing slurry are discussed. Printability of fresh slurry is explained with a focus on flowability, extrudability, and buildability. Additionally, the mechanical properties of 3D-printed clay composites reinforced with natural fibers are reviewed. The review shows the complex role of using wood sawdust and natural fiber in clay 3D printing. While such an addition may compromise the strength properties of clay composite, it improves the shrinkage and cracks following print task. The study concludes that post-printing performance shall be linked to proper design of print slurry via rheological characterization techniques. Further research is required to establish the fresh ink printability criteria. These criteria should account for rheology of fresh slurry, different loading scenarios of in-service printed structure, and geometrical complexities and requirements of final product. To fully leverage the power of 3D printing in customized fabrication and construction, additive manufacturing can be practiced by focusing on aesthetic and architectural design. Clay 3D printing can also be integrated with computational design to fabricate building structures with exterior (façade) and/or interior applications.
本综述讨论了使用粘土和天然纤维进行三维打印的机遇和挑战,重点是直接油墨书写(DIW)方法中的木锯屑。使用泥土和天然材料可促进可持续发展和经济实惠的建筑。增材制造还能提供低成本、快速的建筑,并促进向自动化和定制化做法过渡。本文介绍了使用粘土和锯屑/天然纤维制备印刷浆料的注意事项。讨论了评估新鲜印刷浆料印刷性和特性的关键流变测试和标准。对新鲜泥浆的可印刷性进行了解释,重点是流动性、可挤压性和可构建性。此外,还综述了用天然纤维增强的 3D 打印粘土复合材料的机械性能。综述显示了在粘土三维打印中使用木锯屑和天然纤维的复杂作用。虽然这种添加可能会影响粘土复合材料的强度特性,但却能改善打印任务后的收缩和裂缝。研究得出结论,打印后的性能应与通过流变表征技术对打印浆料进行适当设计有关。需要开展进一步研究,以确定新墨印刷性标准。这些标准应考虑到新鲜浆料的流变性、在役打印结构的不同加载情况以及最终产品的几何复杂性和要求。为了充分发挥三维打印在定制制造和建筑方面的威力,可以通过关注美学和建筑设计来实践增材制造。粘土三维打印还可以与计算设计相结合,制造出具有外部(立面)和/或内部应用的建筑结构。