Miaoshuo Li , Shixi Yang , Jun He , Xiwen Gu , Yongjia Xu , Fengshou Gu , Andrew D. Ball
{"title":"Full-field extraction of subtle displacement components via phase-projection wavelet denoising for vision-based vibration measurement","authors":"Miaoshuo Li , Shixi Yang , Jun He , Xiwen Gu , Yongjia Xu , Fengshou Gu , Andrew D. Ball","doi":"10.1016/j.ymssp.2024.112021","DOIUrl":null,"url":null,"abstract":"<div><div>While vision-based methods are renowned for their ability in full-field vibration measurements, accurately and robustly extracting subtle displacements remains a significant challenge. To address this, this paper presents a novel Optimal Phase-projection Wavelet Denoising (OPWD) method for vision-based vibration measurement that is adept at extracting characteristics of subtle displacement components. The OPWD method enhances signal quality through a structured three-step process: constructing a signal model from pixel array data, transforming this model into the frequency-space domain, and applying wavelet denoising in the spatial dimension. The method was validated through experimental comparisons on a structural beam, confirming consistency with the resonance frequencies obtained from accelerometers and mode shapes from finite element analysis. This study also contributes a comprehensive framework that lays the groundwork for future developments and implementations of additional methods in vision-based vibration measurement.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"224 ","pages":"Article 112021"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327024009191","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
While vision-based methods are renowned for their ability in full-field vibration measurements, accurately and robustly extracting subtle displacements remains a significant challenge. To address this, this paper presents a novel Optimal Phase-projection Wavelet Denoising (OPWD) method for vision-based vibration measurement that is adept at extracting characteristics of subtle displacement components. The OPWD method enhances signal quality through a structured three-step process: constructing a signal model from pixel array data, transforming this model into the frequency-space domain, and applying wavelet denoising in the spatial dimension. The method was validated through experimental comparisons on a structural beam, confirming consistency with the resonance frequencies obtained from accelerometers and mode shapes from finite element analysis. This study also contributes a comprehensive framework that lays the groundwork for future developments and implementations of additional methods in vision-based vibration measurement.
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems