{"title":"On hyperelliptic Jacobians with complex multiplication by Q(−2+2)","authors":"Tomasz Jędrzejak","doi":"10.1016/j.ffa.2024.102512","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a one-parameter family of hyperelliptic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>+</mo><mn>3</mn><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>6</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>3</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msup><mi>x</mi><mo>+</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> defined over <span><math><mi>Q</mi></math></span>, and their Jacobians <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> where without loss of generality <em>a</em> is a non-zero squarefree integer. Clearly, the curve <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> is a quadratic twist by <em>a</em> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. Note that <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> has complex multiplication by the quartic field <span><math><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mo>−</mo><mn>2</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></msqrt><mo>)</mo></mrow></math></span>. For a prime <span><math><mi>p</mi><mo>∤</mo><mn>2</mn><mi>a</mi></math></span> we obtain types of reduction (supersingular, superspecial, ordinary) of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> at <em>p</em> in terms of congruences modulo 16 and the exact formulas for the zeta function of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> for <span><math><mi>p</mi><mo>≢</mo><mn>1</mn><mo>,</mo><mn>7</mn><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>16</mn><mo>)</mo></mrow></math></span>. We deduce as conclusions the complete characterization of torsion subgroups of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span>, namely <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>tors</mi></mrow></msub><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mo>[</mo><mn>2</mn><mo>]</mo></mrow><mo>≃</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>, and some information about <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"100 ","pages":"Article 102512"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001515","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider a one-parameter family of hyperelliptic curves defined over , and their Jacobians where without loss of generality a is a non-zero squarefree integer. Clearly, the curve is a quadratic twist by a of . Note that has complex multiplication by the quartic field . For a prime we obtain types of reduction (supersingular, superspecial, ordinary) of at p in terms of congruences modulo 16 and the exact formulas for the zeta function of over for . We deduce as conclusions the complete characterization of torsion subgroups of , namely , and some information about .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.