{"title":"Regulation of tapioca starch 3D printability by yeast protein: Rheological, textural evaluation, and machine learning prediction","authors":"Yaqiu Kong, Jieling Chen, Ruotong Guo, Qilin Huang","doi":"10.1016/j.jfoodeng.2024.112341","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigated the effects of yeast protein (YP) on gel rheology, texture, and 3D printability of tapioca starch and the feasibility of Principal component analysis (PCA) and support vector machine (SVM) algorithms for classification and prediction of printability. The results indicated that increasing YP content enhanced the viscosity, storage and loss moduli, and hardness, thereby improving extrudability and supportability of 3D printing. The addition of 15% YP exhibited the best 3D printing performance, but excessively high YP addition hindered ink extrusion. PCA analysis based on rheological and texture indices categorized the ink's 3D printing performance into four classes: poor support and low printing accuracy; good support but low printing accuracy; good support and high printing accuracy; and non-smooth extrusion. Furthermore, SVM algorithm used texture data to predict printability classification, with the highest prediction accuracy (91.67%) achieved at polynomial kernel among four different kernel functions. These results confirm that YP can serve as a potential ink for 3D printing and underscore SVM's efficacy in predicting ink's 3D printing performance.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"387 ","pages":"Article 112341"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424004072","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigated the effects of yeast protein (YP) on gel rheology, texture, and 3D printability of tapioca starch and the feasibility of Principal component analysis (PCA) and support vector machine (SVM) algorithms for classification and prediction of printability. The results indicated that increasing YP content enhanced the viscosity, storage and loss moduli, and hardness, thereby improving extrudability and supportability of 3D printing. The addition of 15% YP exhibited the best 3D printing performance, but excessively high YP addition hindered ink extrusion. PCA analysis based on rheological and texture indices categorized the ink's 3D printing performance into four classes: poor support and low printing accuracy; good support but low printing accuracy; good support and high printing accuracy; and non-smooth extrusion. Furthermore, SVM algorithm used texture data to predict printability classification, with the highest prediction accuracy (91.67%) achieved at polynomial kernel among four different kernel functions. These results confirm that YP can serve as a potential ink for 3D printing and underscore SVM's efficacy in predicting ink's 3D printing performance.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.