In situ phosphorus-modified Mg2Ge/Zn-Cu composite with improved mechanical, degradation, biotribological properties, and in vitro and in vivo osteogenesis and osteointegration performance for biodegradable bone-implant applications
Xian Tong , Xinkun Shen , Zhiqiang Lin , Runqi Zhou , Yue Han , Li Zhu , Shengbin Huang , Jianfeng Ma , Yuncang Li , Cuie Wen , Jixing Lin
{"title":"In situ phosphorus-modified Mg2Ge/Zn-Cu composite with improved mechanical, degradation, biotribological properties, and in vitro and in vivo osteogenesis and osteointegration performance for biodegradable bone-implant applications","authors":"Xian Tong , Xinkun Shen , Zhiqiang Lin , Runqi Zhou , Yue Han , Li Zhu , Shengbin Huang , Jianfeng Ma , Yuncang Li , Cuie Wen , Jixing Lin","doi":"10.1016/j.bioactmat.2024.09.026","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc (Zn)-based composites are promising biodegradable bone-implant materials because of their good biocompatibility, processability, and biodegradability. Nevertheless, the low interfacial bonding strength, coordinated deformation capacity, and mechanical strength of current Zn-based composites hinder their clinical application. In this study, we developed a biodegradable <em>in situ</em> 4Mg<sub>2</sub>Ge/Zn-0.3Cu-0.05P composite (denoted ZMGCP) via phosphorus (P) modification and hot-rolling for bone-implant applications. The mechanical properties, corrosion behavior, biotribological performance, <em>in vitro</em> cytocompatibility and osteogenic differentiation, and <em>in vivo</em> osteogenesis and osteointegration of the as-cast (AC) and hot-rolled (HR) ZMGCP samples were systematically evaluated and compared to those of 4Mg<sub>2</sub>Ge/Zn-0.3Cu (denoted ZMGC). The primary and eutectic reinforcement Mg<sub>2</sub>Ge phases formed during solidification were refined after P modification and hot-rolling. The HR ZMGCP exhibited the best tensile properties among all the samples with an ultimate tensile strength of 288.9 MPa, a yield strength of 194.5 MPa, and an elongation of 17.7 %. The HR ZMGCP showed the lowest corrosion rate of 336 μm/a, 186 μm/a, and 61.7 μm/a as measured by potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion testing, respectively, among all the samples in Hanks’ solution. The HR ZMGCP also showed higher biotribological resistance than its ZMGC counterpart. The HR ZMGCP exhibited the highest <em>in vitro</em> cytocompatibility, the best osteogenesis capability and angiogenesis property among the HR samples of pure Zn, ZMGC, and ZMGCP. Furthermore, the HR ZMGCP displayed complete <em>in vivo</em> biocompatibility, osteogenesis, osteointegration capability, and an appropriate degradation rate, showing significant potential for a biodegradable bone-implant material.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"43 ","pages":"Pages 491-509"},"PeriodicalIF":18.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24004286","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc (Zn)-based composites are promising biodegradable bone-implant materials because of their good biocompatibility, processability, and biodegradability. Nevertheless, the low interfacial bonding strength, coordinated deformation capacity, and mechanical strength of current Zn-based composites hinder their clinical application. In this study, we developed a biodegradable in situ 4Mg2Ge/Zn-0.3Cu-0.05P composite (denoted ZMGCP) via phosphorus (P) modification and hot-rolling for bone-implant applications. The mechanical properties, corrosion behavior, biotribological performance, in vitro cytocompatibility and osteogenic differentiation, and in vivo osteogenesis and osteointegration of the as-cast (AC) and hot-rolled (HR) ZMGCP samples were systematically evaluated and compared to those of 4Mg2Ge/Zn-0.3Cu (denoted ZMGC). The primary and eutectic reinforcement Mg2Ge phases formed during solidification were refined after P modification and hot-rolling. The HR ZMGCP exhibited the best tensile properties among all the samples with an ultimate tensile strength of 288.9 MPa, a yield strength of 194.5 MPa, and an elongation of 17.7 %. The HR ZMGCP showed the lowest corrosion rate of 336 μm/a, 186 μm/a, and 61.7 μm/a as measured by potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion testing, respectively, among all the samples in Hanks’ solution. The HR ZMGCP also showed higher biotribological resistance than its ZMGC counterpart. The HR ZMGCP exhibited the highest in vitro cytocompatibility, the best osteogenesis capability and angiogenesis property among the HR samples of pure Zn, ZMGC, and ZMGCP. Furthermore, the HR ZMGCP displayed complete in vivo biocompatibility, osteogenesis, osteointegration capability, and an appropriate degradation rate, showing significant potential for a biodegradable bone-implant material.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.