Privacy-concerned averaged human activeness monitoring and normal pattern recognizing with single passive infrared sensor using one-dimensional modeling

Tajim Md. Niamat Ullah Akhund, Kenbu Teramoto
{"title":"Privacy-concerned averaged human activeness monitoring and normal pattern recognizing with single passive infrared sensor using one-dimensional modeling","authors":"Tajim Md. Niamat Ullah Akhund,&nbsp;Kenbu Teramoto","doi":"10.1016/j.sintl.2024.100303","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting human activity through cameras and machine learning methods raises significant privacy concerns, while alternatives like thermal cameras can be expensive. Passive infrared (PIR) sensors present a cost-effective and privacy-preserving solution, commonly used in home settings for motion detection. This study introduces a system for monitoring human activeness using a single PIR sensor, focusing on privacy preservation. The proposed one-dimensional model, based on the Laplace distribution, emphasizes the role of the parameter <span><math><mi>μ</mi></math></span> in defining velocity distributions. Through real-world experiments with a Raspberry Pi and PIR sensor, the effectiveness of the model in capturing human activeness is validated. The study investigates how different <span><math><mi>μ</mi></math></span> values correlate with activity levels and detect abnormalities. Additionally, the paper addresses the stochastic nature of human behavior, and the impact of <span><math><mi>μ</mi></math></span> on predictability and variability, and provides insights into detection thresholds and interval times. The findings highlight the potential for enhancing abnormality detection and suggest a comprehensive understanding of human activeness.</div></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"6 ","pages":"Article 100303"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351124000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting human activity through cameras and machine learning methods raises significant privacy concerns, while alternatives like thermal cameras can be expensive. Passive infrared (PIR) sensors present a cost-effective and privacy-preserving solution, commonly used in home settings for motion detection. This study introduces a system for monitoring human activeness using a single PIR sensor, focusing on privacy preservation. The proposed one-dimensional model, based on the Laplace distribution, emphasizes the role of the parameter μ in defining velocity distributions. Through real-world experiments with a Raspberry Pi and PIR sensor, the effectiveness of the model in capturing human activeness is validated. The study investigates how different μ values correlate with activity levels and detect abnormalities. Additionally, the paper addresses the stochastic nature of human behavior, and the impact of μ on predictability and variability, and provides insights into detection thresholds and interval times. The findings highlight the potential for enhancing abnormality detection and suggest a comprehensive understanding of human activeness.
利用单个被动红外传感器,通过一维建模实现对人类活动性的平均监测和正常模式识别,兼顾隐私问题
通过摄像头和机器学习方法检测人类活动会引发严重的隐私问题,而红外热像仪等替代品则价格昂贵。被动红外(PIR)传感器是一种既经济又能保护隐私的解决方案,常用于家庭环境中的移动侦测。本研究介绍了一种使用单个 PIR 传感器监测人类活动的系统,重点关注隐私保护。所提出的一维模型基于拉普拉斯分布,强调参数μ在定义速度分布中的作用。通过使用 Raspberry Pi 和 PIR 传感器进行实际实验,验证了该模型在捕捉人类活动性方面的有效性。该研究探讨了不同的 μ 值如何与活动水平相关联,以及如何检测异常情况。此外,论文还探讨了人类行为的随机性、μ 对可预测性和可变性的影响,并对检测阈值和间隔时间提出了见解。研究结果凸显了加强异常检测的潜力,并提出了全面了解人类活动性的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信