Source reconstruction for acoustic emission signals clustering and events nature identification. Application to a composite pipe bending test

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Arnaud Recoquillay, Maël Pénicaud, Valentin Serey, Cyril Lefeuve
{"title":"Source reconstruction for acoustic emission signals clustering and events nature identification. Application to a composite pipe bending test","authors":"Arnaud Recoquillay,&nbsp;Maël Pénicaud,&nbsp;Valentin Serey,&nbsp;Cyril Lefeuve","doi":"10.1016/j.ymssp.2024.111954","DOIUrl":null,"url":null,"abstract":"<div><div>This article deals with the application of clustering to acoustic emission data. Although many results are available in the literature for small scale applications showing clustering linking the clusters to the physical nature of the events, the performances are in general limited in large structures due to the effect of propagation on the characteristics of acquired signals. We propose here a methodology coupling source reconstruction, compensating the propagation, and clustering to recover the physical nature of the events. The methodology is exemplified on data from a bending test of a composite pipe, enabling the identification of matrix cracking, fiber debonding and fiber breakage where clustering directly on the data leads to data clustered based on the source–sensor distance.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"224 ","pages":"Article 111954"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327024008525","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article deals with the application of clustering to acoustic emission data. Although many results are available in the literature for small scale applications showing clustering linking the clusters to the physical nature of the events, the performances are in general limited in large structures due to the effect of propagation on the characteristics of acquired signals. We propose here a methodology coupling source reconstruction, compensating the propagation, and clustering to recover the physical nature of the events. The methodology is exemplified on data from a bending test of a composite pipe, enabling the identification of matrix cracking, fiber debonding and fiber breakage where clustering directly on the data leads to data clustered based on the source–sensor distance.
声发射信号聚类和事件性质识别的声源重建。应用于复合管道弯曲测试
本文论述了聚类在声发射数据中的应用。尽管文献中已有许多小规模应用的结果,表明聚类将聚类与事件的物理本质联系起来,但在大型结构中,由于传播对获取信号特征的影响,其性能普遍有限。我们在此提出一种方法,将信号源重建、传播补偿和聚类结合起来,以恢复事件的物理本质。该方法以复合材料管道的弯曲测试数据为例,可识别基体开裂、纤维脱粘和纤维断裂,其中直接对数据进行聚类可导致基于源-传感器距离的数据聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信