Na Li, Ji Hua , Fangyan Chen, Wenqian Sun, Yubin Tang
{"title":"A novel 0D/3D Z-Scheme heterojunction ZnS/MIL-88(A) with significantly boosted photocatalytic activity toward tetracycline","authors":"Na Li, Ji Hua , Fangyan Chen, Wenqian Sun, Yubin Tang","doi":"10.1016/j.jpcs.2024.112372","DOIUrl":null,"url":null,"abstract":"<div><div>Coupling two different photocatalytic materials to construct a heterojunction is a preferable strategy for obtaining the composite photocatalyst with high activity. Herein, a novel 0D/3D Z-scheme heterostructure ZnS/MIL-88(A) was constructed by anchoring 0D ZnS nanoparticles on the surface of the 3D MIL-88(A). The prepared ZnS/MIL-88(A) was characterized by using FT-IR, XRD, SEM, UV–vis and XPS. The photodegradation of tetracycline (TC) was conducted under the irradiation of visible light to evaluate the photocatalytic performance of ZnS/MIL-88(A). The creation of the Z-scheme heterostructure between ZnS and MIL-88(A) enables ZnS/MIL-88(A) to exhibit excellent visible-light absorption ability and dramatically boost separation and transfer of the photo-induced charge carriers. Compared with MIL-88(A), ZnS/MIL-88(A) shows prominently enhanced photocatalytic activity toward tetracycline, achieving a TC degradation rate of 94 %. The highest photodegradation rate constant (0.02083 min<sup>−1</sup>) of TC by ZnS/MIL-88(A) is 7.77 and 12.33 folds as large as those by MIL-88(A) and ZnS, respectively. After five cycles of reuse, ZnS/MIL-88(A) shows only a slightly decreased TC removal rate, presenting excellent photo-stability. Furthermore, the Z-scheme interfacial charge migration mode and the photocatalytic mechanism of ZnS/MIL-88(A) were discussed according to the band position as well as the identification result of the active species. The radicals ·O<sub>2</sub><sup>−</sup> and ·OH generated in photocatalysis serve as major reactive species to decompose TC. This work provides a new way for designing efficient composite photocatalysts.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112372"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005079","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coupling two different photocatalytic materials to construct a heterojunction is a preferable strategy for obtaining the composite photocatalyst with high activity. Herein, a novel 0D/3D Z-scheme heterostructure ZnS/MIL-88(A) was constructed by anchoring 0D ZnS nanoparticles on the surface of the 3D MIL-88(A). The prepared ZnS/MIL-88(A) was characterized by using FT-IR, XRD, SEM, UV–vis and XPS. The photodegradation of tetracycline (TC) was conducted under the irradiation of visible light to evaluate the photocatalytic performance of ZnS/MIL-88(A). The creation of the Z-scheme heterostructure between ZnS and MIL-88(A) enables ZnS/MIL-88(A) to exhibit excellent visible-light absorption ability and dramatically boost separation and transfer of the photo-induced charge carriers. Compared with MIL-88(A), ZnS/MIL-88(A) shows prominently enhanced photocatalytic activity toward tetracycline, achieving a TC degradation rate of 94 %. The highest photodegradation rate constant (0.02083 min−1) of TC by ZnS/MIL-88(A) is 7.77 and 12.33 folds as large as those by MIL-88(A) and ZnS, respectively. After five cycles of reuse, ZnS/MIL-88(A) shows only a slightly decreased TC removal rate, presenting excellent photo-stability. Furthermore, the Z-scheme interfacial charge migration mode and the photocatalytic mechanism of ZnS/MIL-88(A) were discussed according to the band position as well as the identification result of the active species. The radicals ·O2− and ·OH generated in photocatalysis serve as major reactive species to decompose TC. This work provides a new way for designing efficient composite photocatalysts.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.