{"title":"Lifting elementary Abelian covers of curves","authors":"Jianing Yang","doi":"10.1016/j.jalgebra.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Given a Galois cover of curves <em>f</em> over a field of characteristic <em>p</em>, the lifting problem asks whether there exists a Galois cover over a complete mixed characteristic discrete valuation ring whose reduction is <em>f</em>. In this paper, we consider the case where the Galois groups are elementary abelian <em>p</em>-groups. We prove a combinatorial criterion for lifting an elementary abelian <em>p</em>-cover, dependent on the branch loci of lifts of its <em>p</em>-cyclic subcovers. We also study how branch points of a lift coalesce on the special fiber. Finally, for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>, we analyze lifts for several families of <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>-covers of various conductor types, both with equidistant branch locus geometry and non-equidistant branch locus geometry.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given a Galois cover of curves f over a field of characteristic p, the lifting problem asks whether there exists a Galois cover over a complete mixed characteristic discrete valuation ring whose reduction is f. In this paper, we consider the case where the Galois groups are elementary abelian p-groups. We prove a combinatorial criterion for lifting an elementary abelian p-cover, dependent on the branch loci of lifts of its p-cyclic subcovers. We also study how branch points of a lift coalesce on the special fiber. Finally, for , we analyze lifts for several families of -covers of various conductor types, both with equidistant branch locus geometry and non-equidistant branch locus geometry.
给定特性 p 域上曲线 f 的伽罗瓦盖,提升问题问是否存在一个完整混合特性离散估值环上的伽罗瓦盖,其还原为 f。我们证明了一个提升基本无常 p 盖的组合准则,它取决于其 p 循环子盖的提升支点位置。我们还研究了提升的分支点如何在特殊纤维上凝聚。最后,对于 p=2,我们分析了不同导体类型的 (Z/2)3 覆盖的几个族的提升,既有等距支点几何,也有非等距支点几何。