Lifting elementary Abelian covers of curves

IF 0.8 2区 数学 Q2 MATHEMATICS
Jianing Yang
{"title":"Lifting elementary Abelian covers of curves","authors":"Jianing Yang","doi":"10.1016/j.jalgebra.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Given a Galois cover of curves <em>f</em> over a field of characteristic <em>p</em>, the lifting problem asks whether there exists a Galois cover over a complete mixed characteristic discrete valuation ring whose reduction is <em>f</em>. In this paper, we consider the case where the Galois groups are elementary abelian <em>p</em>-groups. We prove a combinatorial criterion for lifting an elementary abelian <em>p</em>-cover, dependent on the branch loci of lifts of its <em>p</em>-cyclic subcovers. We also study how branch points of a lift coalesce on the special fiber. Finally, for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>, we analyze lifts for several families of <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>-covers of various conductor types, both with equidistant branch locus geometry and non-equidistant branch locus geometry.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"663 ","pages":"Pages 289-315"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005040","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a Galois cover of curves f over a field of characteristic p, the lifting problem asks whether there exists a Galois cover over a complete mixed characteristic discrete valuation ring whose reduction is f. In this paper, we consider the case where the Galois groups are elementary abelian p-groups. We prove a combinatorial criterion for lifting an elementary abelian p-cover, dependent on the branch loci of lifts of its p-cyclic subcovers. We also study how branch points of a lift coalesce on the special fiber. Finally, for p=2, we analyze lifts for several families of (Z/2)3-covers of various conductor types, both with equidistant branch locus geometry and non-equidistant branch locus geometry.
提升曲线的基本阿贝尔盖
给定特性 p 域上曲线 f 的伽罗瓦盖,提升问题问是否存在一个完整混合特性离散估值环上的伽罗瓦盖,其还原为 f。我们证明了一个提升基本无常 p 盖的组合准则,它取决于其 p 循环子盖的提升支点位置。我们还研究了提升的分支点如何在特殊纤维上凝聚。最后,对于 p=2,我们分析了不同导体类型的 (Z/2)3 覆盖的几个族的提升,既有等距支点几何,也有非等距支点几何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信