Enhancing short-term streamflow forecasting of extreme events: A wavelet-artificial neural network hybrid approach

Q1 Environmental Science
Yulia Gorodetskaya , Rodrigo Oliveira Silva , Celso Bandeira de Melo Ribeiro , Leonardo Goliatt
{"title":"Enhancing short-term streamflow forecasting of extreme events: A wavelet-artificial neural network hybrid approach","authors":"Yulia Gorodetskaya ,&nbsp;Rodrigo Oliveira Silva ,&nbsp;Celso Bandeira de Melo Ribeiro ,&nbsp;Leonardo Goliatt","doi":"10.1016/j.watcyc.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate short-term streamflow forecasting models are crucial for effective water resource management, enabling timely responses to extreme flood or drought events and mitigating potential socioeconomic damage. This study proposes robust hybrid Wavelet Artificial Neural Network (WANN) models for real-world hydrological applications. Two WANN variants, WANN<sub><em>one</em></sub> and WANN<sub><em>multi</em></sub>, are proposed for short-term streamflow forecasting of extreme (high and low) flows at eight gauging stations within Brazil's Paraíba do Sul River basin. WANN<sub><em>one</em></sub> directly feeds both the original streamflow data and the decomposed components obtained through an <em>À</em> Trous wavelet transform into the ANN architecture. Conversely, WANN<sub><em>multi</em></sub> utilizes separate ANNs for the original data, with the final streamflow estimate reconstructed via the inverse wavelet transform of the individual ANN outputs. The performance of these WANN models is then compared against conventional ANN models. In both approaches, Bayesian optimization is employed to fine-tune the hyperparameters within the ANN architecture. The WANN models achieved superior performance for 7-day streamflow forecasts compared to conventional ANN models. WANN models yielded high R<sup>2</sup> values (&gt;0.9) and low MAPE (4.8%–14.7%) within the expected RMSE range, demonstrating statistically significant improvements over ANN models (71% and 75% reduction in RMSE and MAPE, respectively, and 69% increase in R<sup>2</sup>). Further analysis revealed that WANN<sub><em>multi</em></sub> models generally exhibited superior performance for low extreme flow predictions, while WANN<sub><em>one</em></sub> models achieved the highest accuracy for high extreme flows at most stations. WANN models' strong performance suggests their value for real-time flood warnings, enabling improved decision-making in areas like flood/drought mitigation and urban water planning.</div></div>","PeriodicalId":34143,"journal":{"name":"Water Cycle","volume":"5 ","pages":"Pages 297-312"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Cycle","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266644532400028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate short-term streamflow forecasting models are crucial for effective water resource management, enabling timely responses to extreme flood or drought events and mitigating potential socioeconomic damage. This study proposes robust hybrid Wavelet Artificial Neural Network (WANN) models for real-world hydrological applications. Two WANN variants, WANNone and WANNmulti, are proposed for short-term streamflow forecasting of extreme (high and low) flows at eight gauging stations within Brazil's Paraíba do Sul River basin. WANNone directly feeds both the original streamflow data and the decomposed components obtained through an À Trous wavelet transform into the ANN architecture. Conversely, WANNmulti utilizes separate ANNs for the original data, with the final streamflow estimate reconstructed via the inverse wavelet transform of the individual ANN outputs. The performance of these WANN models is then compared against conventional ANN models. In both approaches, Bayesian optimization is employed to fine-tune the hyperparameters within the ANN architecture. The WANN models achieved superior performance for 7-day streamflow forecasts compared to conventional ANN models. WANN models yielded high R2 values (>0.9) and low MAPE (4.8%–14.7%) within the expected RMSE range, demonstrating statistically significant improvements over ANN models (71% and 75% reduction in RMSE and MAPE, respectively, and 69% increase in R2). Further analysis revealed that WANNmulti models generally exhibited superior performance for low extreme flow predictions, while WANNone models achieved the highest accuracy for high extreme flows at most stations. WANN models' strong performance suggests their value for real-time flood warnings, enabling improved decision-making in areas like flood/drought mitigation and urban water planning.

Abstract Image

加强极端事件的短期流量预报:小波-人工神经网络混合方法
准确的短期流量预测模型对于有效管理水资源、及时应对极端洪水或干旱事件以及减轻潜在的社会经济损失至关重要。本研究针对实际水文应用提出了稳健的混合小波人工神经网络(WANN)模型。针对巴西南帕拉伊巴河流域八个测站的极端(高和低)流量的短期流量预报,提出了两个 WANN 变体:WANNone 和 WANNmulti。WANNone 直接将原始流量数据和通过 À Trous 小波变换获得的分解成分输入 ANN 架构。相反,WANNmulti 对原始数据使用单独的 ANN,通过对各个 ANN 输出进行反小波变换来重建最终的流量估计值。然后将这些 WANN 模型的性能与传统 ANN 模型进行比较。在这两种方法中,都采用了贝叶斯优化技术来微调 ANN 架构中的超参数。与传统的 ANN 模型相比,WANN 模型在 7 天流量预报方面表现出色。在预期的 RMSE 范围内,WANN 模型获得了较高的 R2 值(0.9)和较低的 MAPE 值(4.8%-14.7%),与 ANN 模型相比有显著的统计学改进(RMSE 和 MAPE 分别降低了 71% 和 75%,R2 提高了 69%)。进一步的分析表明,WANNmulti 模型在预测低极端流量方面表现优异,而 WANNone 模型在预测大多数站点的高极端流量方面精度最高。WANN 模型的强大性能表明了其在实时洪水预警方面的价值,可帮助改进防洪/抗旱减灾和城市水规划等领域的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Cycle
Water Cycle Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
20
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信