Control point modifications that preserve the Pythagorean–hodograph nature of planar quintic curves

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Francesca Pelosi , Maria Lucia Sampoli , Rida T. Farouki
{"title":"Control point modifications that preserve the Pythagorean–hodograph nature of planar quintic curves","authors":"Francesca Pelosi ,&nbsp;Maria Lucia Sampoli ,&nbsp;Rida T. Farouki","doi":"10.1016/j.cam.2024.116301","DOIUrl":null,"url":null,"abstract":"<div><div>Although planar Pythagorean–hodograph (PH) curves are compatible with the standard Bernstein–Bézier representations, freely modifying the control points will compromise their PH nature. The present study focuses on identifying control point displacements that ensure a given planar PH curve remains a PH curve. In particular, for planar quintic PH curves <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>[</mo><mspace></mspace><mn>0</mn><mo>,</mo><mn>1</mn><mspace></mspace><mo>]</mo></mrow></mrow></math></span> it is shown that finitely-many simultaneous displacements of two control points yield modified quintic PH curves, identified as the solutions of quadratic and cubic equations. As a more practical approach, modification of PH quintics in canonical form with <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> by the displacement of a single interior control point is considered, with the remaining interior control points being used to minimize a measure of deviation from the original PH quintic. As illustrated by several examples, this approach provides an efficient and intuitive means of effecting reasonable shape modifications within the space of planar quintic PH curves.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116301"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005491","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Although planar Pythagorean–hodograph (PH) curves are compatible with the standard Bernstein–Bézier representations, freely modifying the control points will compromise their PH nature. The present study focuses on identifying control point displacements that ensure a given planar PH curve remains a PH curve. In particular, for planar quintic PH curves r(t), t[0,1] it is shown that finitely-many simultaneous displacements of two control points yield modified quintic PH curves, identified as the solutions of quadratic and cubic equations. As a more practical approach, modification of PH quintics in canonical form with r(0)=0 and r(1)=1 by the displacement of a single interior control point is considered, with the remaining interior control points being used to minimize a measure of deviation from the original PH quintic. As illustrated by several examples, this approach provides an efficient and intuitive means of effecting reasonable shape modifications within the space of planar quintic PH curves.
保持平面五次曲线勾股定理性质的控制点修正
虽然平面毕达哥拉斯曲线(PH)与标准伯恩斯坦-贝塞尔表示法兼容,但随意修改控制点会损害其 PH 性质。本研究的重点是确定控制点位移,以确保给定的平面 PH 曲线仍然是 PH 曲线。具体而言,对于平面五元 PH 曲线 r(t),t∈[0,1],研究表明,两个控制点的有限多个同时位移会产生修正的五元 PH 曲线,并将其确定为二次方程和三次方程的解。作为一种更实用的方法,我们考虑了通过单个内部控制点的位移来修正 r(0)=0 和 r(1)=1 的典型 PH 五边形,并利用其余内部控制点来最小化与原始 PH 五边形的偏差。正如几个示例所示,这种方法提供了一种高效、直观的手段,可在平面 PH 五边形曲线空间内实现合理的形状修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信