Integrated resource strategic planning considering inter-regional flexibility supply–demand balance: A case study for the Northwest and Central Grid in China
Jiahai Yuan , Qilin Mou , Ke Du , Baodi Ding , Yuxuan Zhang , Zifeng Wu , Kai Zhang , Haonan Zhang
{"title":"Integrated resource strategic planning considering inter-regional flexibility supply–demand balance: A case study for the Northwest and Central Grid in China","authors":"Jiahai Yuan , Qilin Mou , Ke Du , Baodi Ding , Yuxuan Zhang , Zifeng Wu , Kai Zhang , Haonan Zhang","doi":"10.1016/j.seta.2024.104019","DOIUrl":null,"url":null,"abstract":"<div><div>China’s rapid advancement in renewable energy and regional power grid interconnection has highlighted the need for enhanced system flexibility to ensure the security and stability of regional power systems. To address this issue, this study presents a new framework for integrated resource strategic planning for inter-regional flexibility (IRSP-IF). This framework evaluates inter-regional flexibility demand and optimizes power resource allocation across regions. The northwest and central grids in China are used as case studies to evaluate inter-regional power resource allocation from 2022 to 2035. This analysis considers key factors including flexibility supply–demand balance constraints, regional power grid interconnections, and time scales for assessing flexibility demand. The results show that incorporating these constraints and interconnections into the strategic power plan enables greater integration of renewable energy while reducing both installed capacity and the overall cost of regional power resources. In the S3 scenario, which includes inter-regional flexibility supply–demand balance, the total integration of wind and solar power increases by 1.54%. Additionally, the combined average annual fixed and operating costs decrease by 1.44 billion yuan compared to the S2 scenario, which only considers single-region flexibility supply–demand balance. Furthermore, evaluating flexibility demand at a shorter time scale results in a higher proportion of flexible resources, with an average annual growth of 24.43%.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104019"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824004156","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
China’s rapid advancement in renewable energy and regional power grid interconnection has highlighted the need for enhanced system flexibility to ensure the security and stability of regional power systems. To address this issue, this study presents a new framework for integrated resource strategic planning for inter-regional flexibility (IRSP-IF). This framework evaluates inter-regional flexibility demand and optimizes power resource allocation across regions. The northwest and central grids in China are used as case studies to evaluate inter-regional power resource allocation from 2022 to 2035. This analysis considers key factors including flexibility supply–demand balance constraints, regional power grid interconnections, and time scales for assessing flexibility demand. The results show that incorporating these constraints and interconnections into the strategic power plan enables greater integration of renewable energy while reducing both installed capacity and the overall cost of regional power resources. In the S3 scenario, which includes inter-regional flexibility supply–demand balance, the total integration of wind and solar power increases by 1.54%. Additionally, the combined average annual fixed and operating costs decrease by 1.44 billion yuan compared to the S2 scenario, which only considers single-region flexibility supply–demand balance. Furthermore, evaluating flexibility demand at a shorter time scale results in a higher proportion of flexible resources, with an average annual growth of 24.43%.
期刊介绍:
Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.