{"title":"Bomb-radiocarbon in the Northern Indian Ocean","authors":"Harsh Raj, Siby Kurian","doi":"10.1016/j.marchem.2024.104459","DOIUrl":null,"url":null,"abstract":"<div><div>Bomb-radiocarbon is a useful tracer to study ocean circulation and air-sea CO<sub>2</sub> exchange processes. In the present study bomb radiocarbon distribution in dissolved inorganic carbon of the Northern Indian Ocean around late 2010s has been evaluated. In the late 2010s surface waters in the Northern Indian Ocean had ∆<sup>14</sup>C values ranging between 9 and 17 ‰ which is comparable or even higher than that of the contemporaneous atmospheric ∆<sup>14</sup>C values. Water column measurements showed that the bomb <sup>14</sup>C inventory in the Arabian Sea and the Bay of Bengal has increased between 1990s and 2010s. During the same period, the eastern and western equatorial Indian Ocean showed either no change or a slight decline in the water column bomb <sup>14</sup>C inventory. These bomb <sup>14</sup>C inventory values were also used to estimate the air-sea CO<sub>2</sub> exchange rate and net CO<sub>2</sub> flux over the Northern Indian Ocean region. Bomb <sup>14</sup>C-based estimate of net CO<sub>2</sub> flux from the Arabian Sea is 75 ± 24 Tg C yr<sup>−1</sup> and the Bay of Bengal is 1 ± 7 Tg C yr<sup>−1</sup>, which is comparable to the estimates reported by previous investigations in the region. The present observations show that the bomb <sup>14</sup>C is being transferred to the deeper depths of the ocean, emphasizing the need for continued <sup>14</sup>C measurements to gain further insights into subsurface processes in the region.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"267 ","pages":"Article 104459"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420324001105","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bomb-radiocarbon is a useful tracer to study ocean circulation and air-sea CO2 exchange processes. In the present study bomb radiocarbon distribution in dissolved inorganic carbon of the Northern Indian Ocean around late 2010s has been evaluated. In the late 2010s surface waters in the Northern Indian Ocean had ∆14C values ranging between 9 and 17 ‰ which is comparable or even higher than that of the contemporaneous atmospheric ∆14C values. Water column measurements showed that the bomb 14C inventory in the Arabian Sea and the Bay of Bengal has increased between 1990s and 2010s. During the same period, the eastern and western equatorial Indian Ocean showed either no change or a slight decline in the water column bomb 14C inventory. These bomb 14C inventory values were also used to estimate the air-sea CO2 exchange rate and net CO2 flux over the Northern Indian Ocean region. Bomb 14C-based estimate of net CO2 flux from the Arabian Sea is 75 ± 24 Tg C yr−1 and the Bay of Bengal is 1 ± 7 Tg C yr−1, which is comparable to the estimates reported by previous investigations in the region. The present observations show that the bomb 14C is being transferred to the deeper depths of the ocean, emphasizing the need for continued 14C measurements to gain further insights into subsurface processes in the region.
期刊介绍:
Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.