A note on an effective bound for the gonality conjecture

IF 0.7 2区 数学 Q2 MATHEMATICS
Alexander S. Duncan , Wenbo Niu , Jinhyung Park
{"title":"A note on an effective bound for the gonality conjecture","authors":"Alexander S. Duncan ,&nbsp;Wenbo Niu ,&nbsp;Jinhyung Park","doi":"10.1016/j.jpaa.2024.107820","DOIUrl":null,"url":null,"abstract":"<div><div>The gonality conjecture, proved by Ein–Lazarsfeld, asserts that the gonality of a nonsingular projective curve of genus <em>g</em> can be detected from its syzygies in the embedding given by a line bundle of sufficiently large degree. An effective result obtained by Rathmann says that any line bundle of degree at least <span><math><mn>4</mn><mi>g</mi><mo>−</mo><mn>3</mn></math></span> would work in the gonality theorem. In this note, we develop a new method to improve the degree bound to <span><math><mn>4</mn><mi>g</mi><mo>−</mo><mn>4</mn></math></span> with two exceptional cases.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002172","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The gonality conjecture, proved by Ein–Lazarsfeld, asserts that the gonality of a nonsingular projective curve of genus g can be detected from its syzygies in the embedding given by a line bundle of sufficiently large degree. An effective result obtained by Rathmann says that any line bundle of degree at least 4g3 would work in the gonality theorem. In this note, we develop a new method to improve the degree bound to 4g4 with two exceptional cases.
关于吟唱性猜想的有效约束的说明
由艾因-拉扎斯菲尔德证明的冈性猜想认为,可以通过由足够大阶数的线束给出的嵌入中的共轭来检测属数为 g 的非共轭投影曲线的冈性。拉特曼得到的一个有效结果表明,任何阶数至少为 4g-3 的线束都可以用于贡性定理。在本注释中,我们开发了一种新方法,通过两种特殊情况将阶数约束提高到 4g-4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信