Compatible weak factorization systems and model structures

IF 0.7 2区 数学 Q2 MATHEMATICS
Zhenxing Di , Liping Li , Li Liang
{"title":"Compatible weak factorization systems and model structures","authors":"Zhenxing Di ,&nbsp;Liping Li ,&nbsp;Li Liang","doi":"10.1016/j.jpaa.2024.107821","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the concept of compatible weak factorization systems in general categories is introduced as a counterpart of compatible complete cotorsion pairs in abelian categories. We describe a method to construct model structures on general categories via two compatible weak factorization systems satisfying certain conditions, and hence, generalize a very useful result by Gillespie for abelian model structures. As particular examples, we show that weak factorization systems associated to some classical model structures (for example, the Kan-Quillen model structure on <span><math><mi>sSet</mi></math></span>) satisfy these conditions.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002184","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the concept of compatible weak factorization systems in general categories is introduced as a counterpart of compatible complete cotorsion pairs in abelian categories. We describe a method to construct model structures on general categories via two compatible weak factorization systems satisfying certain conditions, and hence, generalize a very useful result by Gillespie for abelian model structures. As particular examples, we show that weak factorization systems associated to some classical model structures (for example, the Kan-Quillen model structure on sSet) satisfy these conditions.
兼容的弱因式分解系统和模型结构
本文引入了广义范畴中相容弱因式分解系统的概念,作为非比利亚范畴中相容完全因式分解对的对应概念。我们描述了一种通过满足特定条件的两个兼容弱因式分解系统来构造通类上的模型结构的方法,并由此推广了吉莱斯皮(Gillespie)针对非比模型结构提出的一个非常有用的结果。作为具体例子,我们证明了与一些经典模型结构(例如,sSet 上的 Kan-Quillen 模型结构)相关的弱因式分解系统满足这些条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信