Differential theory of zero-dimensional schemes

IF 0.7 2区 数学 Q2 MATHEMATICS
Martin Kreuzer , Tran N.K. Linh , Le N. Long
{"title":"Differential theory of zero-dimensional schemes","authors":"Martin Kreuzer ,&nbsp;Tran N.K. Linh ,&nbsp;Le N. Long","doi":"10.1016/j.jpaa.2024.107815","DOIUrl":null,"url":null,"abstract":"<div><div>To study a 0-dimensional scheme <span><math><mi>X</mi></math></span> in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over a perfect field <em>K</em>, we use the module of Kähler differentials <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi><mo>/</mo><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> of its homogeneous coordinate ring <em>R</em> and its exterior powers, the higher modules of Kähler differentials <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi><mo>/</mo><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span>. One of our main results is a characterization of weakly curvilinear schemes <span><math><mi>X</mi></math></span> by the Hilbert polynomials of the modules <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi><mo>/</mo><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> which allows us to check this property algorithmically without computing the primary decomposition of the vanishing ideal of <span><math><mi>X</mi></math></span>. Further main achievements are precise formulas for the Hilbert functions and Hilbert polynomials of the modules <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi><mo>/</mo><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> for a fat point scheme <span><math><mi>X</mi></math></span> which extend and settle previous partial results and conjectures. Underlying these results is a novel method: we first embed the homogeneous coordinate ring <em>R</em> into its truncated integral closure <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. Then we use the corresponding map from the module of Kähler differentials <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi><mo>/</mo><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> to <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>/</mo><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> to find a formula for the Hilbert polynomial <span><math><mrow><mi>HP</mi></mrow><mo>(</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi><mo>/</mo><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></math></span> and a sharp bound for the regularity index <span><math><mrow><mi>ri</mi></mrow><mo>(</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi><mo>/</mo><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></math></span>. Next we extend this to formulas for the Hilbert polynomials <span><math><mrow><mi>HP</mi></mrow><mo>(</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi><mo>/</mo><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></math></span> and bounds for the regularity indices of the higher modules of Kähler differentials. As a further application, we characterize uniformity conditions on <span><math><mi>X</mi></math></span> using the Hilbert functions of the Kähler differential modules of <span><math><mi>X</mi></math></span> and its subschemes.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002123","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

To study a 0-dimensional scheme X in Pn over a perfect field K, we use the module of Kähler differentials ΩR/K1 of its homogeneous coordinate ring R and its exterior powers, the higher modules of Kähler differentials ΩR/Km. One of our main results is a characterization of weakly curvilinear schemes X by the Hilbert polynomials of the modules ΩR/Km which allows us to check this property algorithmically without computing the primary decomposition of the vanishing ideal of X. Further main achievements are precise formulas for the Hilbert functions and Hilbert polynomials of the modules ΩR/Km for a fat point scheme X which extend and settle previous partial results and conjectures. Underlying these results is a novel method: we first embed the homogeneous coordinate ring R into its truncated integral closure R˜. Then we use the corresponding map from the module of Kähler differentials ΩR/K1 to ΩR˜/K1 to find a formula for the Hilbert polynomial HP(ΩR/K1) and a sharp bound for the regularity index ri(ΩR/K1). Next we extend this to formulas for the Hilbert polynomials HP(ΩR/Km) and bounds for the regularity indices of the higher modules of Kähler differentials. As a further application, we characterize uniformity conditions on X using the Hilbert functions of the Kähler differential modules of X and its subschemes.
零维方案的微分理论
为了研究完全域 K 上 Pn 中的 0 维方案 X,我们使用了其同质坐标环 R 的凯勒微分模块 ΩR/K1 及其外部幂,即凯勒微分的高阶模块 ΩR/Km。我们的主要成果之一是通过模块 ΩR/Km 的希尔伯特多项式描述了弱曲线方案 X 的特性,这使我们无需计算 X 消失理想的主分解就能用算法检查这一特性。其他主要成果是胖点方案 X 的模块 ΩR/Km 的希尔伯特函数和希尔伯特多项式的精确公式,这些公式扩展并解决了之前的部分结果和猜想。这些结果的基础是一种新方法:我们首先将同质坐标环 R 嵌入其截积分闭包 R˜。然后,我们利用从凯勒微分模块 ΩR/K1 到 ΩR˜/K1 的相应映射,找到希尔伯特多项式 HP(ΩR/K1) 的公式和正则指数 ri(ΩR/K1) 的尖锐约束。接下来,我们将其扩展到希尔伯特多项式 HP(ΩR/Km) 的公式和凯勒微分高阶模块的正则指数的边界。作为进一步的应用,我们利用 X 及其子方案的凯勒微分模块的希尔伯特函数来描述 X 的均匀性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信