Enhanced syngas production through dry reforming of methane with Ni/CeZrO2 catalyst: Kinetic parameter investigation and CO2-rich feed simulation

IF 5.5 Q1 ENGINEERING, CHEMICAL
Intan Clarissa Sophiana , Soen Steven , Rawiyah Khairunida’ Shalihah , Ferry Iskandar , Hary Devianto , Elvi Restiawaty , Norikazu Nishiyama , Yogi Wibisono Budhi
{"title":"Enhanced syngas production through dry reforming of methane with Ni/CeZrO2 catalyst: Kinetic parameter investigation and CO2-rich feed simulation","authors":"Intan Clarissa Sophiana ,&nbsp;Soen Steven ,&nbsp;Rawiyah Khairunida’ Shalihah ,&nbsp;Ferry Iskandar ,&nbsp;Hary Devianto ,&nbsp;Elvi Restiawaty ,&nbsp;Norikazu Nishiyama ,&nbsp;Yogi Wibisono Budhi","doi":"10.1016/j.ceja.2024.100655","DOIUrl":null,"url":null,"abstract":"<div><div>Natuna's natural gas reserve, which contains 70 %–v CO<sub>2</sub> and 30 %–v CH<sub>4,</sub> opens a prospective method for producing syngas through the dry reforming of methane (DRM). This study used the equation and determination of kinetic parameters in a fixed-bed reactor to develop the operating conditions for the DRM process. The catalyst used was 10 %Ni/CeZrO<sub>2</sub> and followed the Langmuir-Hinshelwood mechanism, with CH<sub>4</sub> dissociation (activation of C–H bonds) on the Ni catalyst as the rate-determining step. According to the results, the simulation and experimental data have error values of ≤ 5 % and RMSE &lt; 0.046. This indicates that the equation and kinetic parameters used in the simulation are valid for reactor modeling. Steady-state modeling was then conducted using a 1D quasihomogeneous model. The feed composition of CO<sub>2</sub>:CH<sub>4</sub> = 70:30 (Natuna gas field composition) has optimized results with temperature 700 °C, CH<sub>4</sub> conversion at 92 %, CO<sub>2</sub> conversion at 28 %, and H<sub>2</sub>/CO ratio 1.42, and carbon formation at 7.1 mgC/gcat. This study also found that a higher CO<sub>2</sub>:CH<sub>4</sub> feed ratio could reduce carbon formation during DRM.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100655"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Natuna's natural gas reserve, which contains 70 %–v CO2 and 30 %–v CH4, opens a prospective method for producing syngas through the dry reforming of methane (DRM). This study used the equation and determination of kinetic parameters in a fixed-bed reactor to develop the operating conditions for the DRM process. The catalyst used was 10 %Ni/CeZrO2 and followed the Langmuir-Hinshelwood mechanism, with CH4 dissociation (activation of C–H bonds) on the Ni catalyst as the rate-determining step. According to the results, the simulation and experimental data have error values of ≤ 5 % and RMSE < 0.046. This indicates that the equation and kinetic parameters used in the simulation are valid for reactor modeling. Steady-state modeling was then conducted using a 1D quasihomogeneous model. The feed composition of CO2:CH4 = 70:30 (Natuna gas field composition) has optimized results with temperature 700 °C, CH4 conversion at 92 %, CO2 conversion at 28 %, and H2/CO ratio 1.42, and carbon formation at 7.1 mgC/gcat. This study also found that a higher CO2:CH4 feed ratio could reduce carbon formation during DRM.

Abstract Image

使用 Ni/CeZrO2 催化剂对甲烷进行干转化,提高合成气产量:动力学参数研究和富含二氧化碳的进料模拟
纳土纳的天然气储量含有 70%-v CO2 和 30%-v CH4,这为通过甲烷干重整(DRM)生产合成气开辟了前景广阔的方法。本研究利用固定床反应器中的方程和动力学参数的确定来制定 DRM 工艺的操作条件。使用的催化剂为 10 %Ni/CeZrO2 并遵循 Langmuir-Hinshelwood 机理,Ni 催化剂上的 CH4 解离(C-H 键活化)是决定速率的步骤。结果表明,模拟数据和实验数据的误差值≤ 5 %,RMSE < 0.046。这表明模拟中使用的方程和动力学参数在反应器建模中是有效的。然后使用一维准均质模型进行了稳态建模。CO2:CH4 = 70:30(纳土纳气田成分)的进料成分产生了最佳结果,温度为 700 °C,CH4 转化率为 92%,CO2 转化率为 28%,H2/CO 比率为 1.42,碳形成率为 7.1 mgC/gcat。该研究还发现,较高的 CO2:CH4 进料比可减少 DRM 过程中的碳形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信