{"title":"Recent advances for diode-pumped CW Pr:YLF lasers in power scaling at different wavelengths","authors":"","doi":"10.1016/j.infrared.2024.105578","DOIUrl":null,"url":null,"abstract":"<div><div>Visible lasers based on blue laser diodes (LDs) pumped trivalent rare-earth ions doped crystal have recently attracted growing attention due to their advantages of high-efficiency, compact structure, and low cost, having wide applications in the fields of laser displays, biomedicine, material processing and so on. Pr:YLF lasers have been widely researched and further developed for the excellent spectral characteristics of Pr:YLF crystals. Specifically, LD-pumped continuous-wave (CW) Pr:YLF lasers have attained significant progress in lasing output performance, including output power scaling, emission wavelength expansion, and output mode diversification with the maturity of blue LDs. This paper mainly reviews the recent research progress on output performance improvement and provides insights into the further development trend of LD-pumped CW Pr:YLF lasers, aiming to provide a useful reference for the development of LD-pumped CW Pr:YLF lasers in the future.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004626","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Visible lasers based on blue laser diodes (LDs) pumped trivalent rare-earth ions doped crystal have recently attracted growing attention due to their advantages of high-efficiency, compact structure, and low cost, having wide applications in the fields of laser displays, biomedicine, material processing and so on. Pr:YLF lasers have been widely researched and further developed for the excellent spectral characteristics of Pr:YLF crystals. Specifically, LD-pumped continuous-wave (CW) Pr:YLF lasers have attained significant progress in lasing output performance, including output power scaling, emission wavelength expansion, and output mode diversification with the maturity of blue LDs. This paper mainly reviews the recent research progress on output performance improvement and provides insights into the further development trend of LD-pumped CW Pr:YLF lasers, aiming to provide a useful reference for the development of LD-pumped CW Pr:YLF lasers in the future.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.