{"title":"Novel pre-folded lattice metamaterial for two-stage deformation and variable Poisson’s ratio properties under quasi-static compression","authors":"Wenyou Zha , Weikai Shi , Yongtao Yao , Yanju Liu","doi":"10.1016/j.compstruct.2024.118623","DOIUrl":null,"url":null,"abstract":"<div><div>When honeycomb structures are compressed in the axial direction, they are prone to high crushing loads and structural instability. Folded structures with origami ideas can overcome this defect. In this work, a novel pre-folded lattice metamaterial is proposed, with notable energy absorption capacity and vibration isolation properties. The geometry of the structure is described, and a theoretical model of the deformation platform at various stages is established. The compression and energy absorption properties of the structure are evaluated by compression experiments and finite element simulations. The findings indicate that the structure has two smooth and stable platform stages under quasi-static compression. This feature effectively avoids the initial crushing force of compression energy. It possesses a bistable property during the structural deformation process in the first stage. In the meantime, the compression deformation has the characteristic of variable Poisson’s ratio. Furthermore, the vibration modes and vibration isolation capacity of the variable folding angle are investigated as well. Pre-folded lattice metamaterial with 49.1° exhibits the broadest vibration isolation region across the 0–500 Hz spectrum. This work can provide a novel perspective for the integrated design of structural load-bearing and vibration isolation functions.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118623"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007517","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
When honeycomb structures are compressed in the axial direction, they are prone to high crushing loads and structural instability. Folded structures with origami ideas can overcome this defect. In this work, a novel pre-folded lattice metamaterial is proposed, with notable energy absorption capacity and vibration isolation properties. The geometry of the structure is described, and a theoretical model of the deformation platform at various stages is established. The compression and energy absorption properties of the structure are evaluated by compression experiments and finite element simulations. The findings indicate that the structure has two smooth and stable platform stages under quasi-static compression. This feature effectively avoids the initial crushing force of compression energy. It possesses a bistable property during the structural deformation process in the first stage. In the meantime, the compression deformation has the characteristic of variable Poisson’s ratio. Furthermore, the vibration modes and vibration isolation capacity of the variable folding angle are investigated as well. Pre-folded lattice metamaterial with 49.1° exhibits the broadest vibration isolation region across the 0–500 Hz spectrum. This work can provide a novel perspective for the integrated design of structural load-bearing and vibration isolation functions.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.