Tin-doped titanium dioxide film-enhanced electrocatalytic hydrogen evolution

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qais M. Al-Bataineh , Lina A. Alakhras , Ahmad A. Ahmad , Gabriela Toader , Ahmad Telfah
{"title":"Tin-doped titanium dioxide film-enhanced electrocatalytic hydrogen evolution","authors":"Qais M. Al-Bataineh ,&nbsp;Lina A. Alakhras ,&nbsp;Ahmad A. Ahmad ,&nbsp;Gabriela Toader ,&nbsp;Ahmad Telfah","doi":"10.1016/j.mseb.2024.117753","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocatalyst water-splitting based on metal oxide nanocomposites has gained considerable interest in hydrogen evolution applications. Here, undoped titanium dioxide and tin-doped titanium dioxide films (TiO<sub>2</sub> and Sn/TiO<sub>2</sub>, respectively) are presented for highly efficient H<sub>2</sub> production applications. The crystal structure analysis is performed by analyzing the XRD patterns using the Rietveld refinement method and the Williamson-Hall method. XRF scans are used to confirm the doping mechanism between Sn and TiO<sub>2</sub>. The bandgap energies of undoped TiO<sub>2</sub> and Sn/TiO<sub>2</sub> films are 3.33 and 3.15 eV, respectively. On the other hand, the electrical conductivity values of undoped TiO<sub>2</sub> and Sn/TiO<sub>2</sub> films are 0.10 and 0.25 mS.cm<sup>−1</sup>, respectively. The electrochemical H<sub>2</sub> production performance of undoped TiO<sub>2</sub> and Sn/TiO<sub>2</sub> films is investigated through two different methods: potentiostat measurements and analytical methods. It can be concluded that the Sn/TiO<sub>2</sub> film exhibits higher HER performance and H<sub>2</sub> production efficiency than the undoped TiO<sub>2</sub> film.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"310 ","pages":"Article 117753"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724005828","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalyst water-splitting based on metal oxide nanocomposites has gained considerable interest in hydrogen evolution applications. Here, undoped titanium dioxide and tin-doped titanium dioxide films (TiO2 and Sn/TiO2, respectively) are presented for highly efficient H2 production applications. The crystal structure analysis is performed by analyzing the XRD patterns using the Rietveld refinement method and the Williamson-Hall method. XRF scans are used to confirm the doping mechanism between Sn and TiO2. The bandgap energies of undoped TiO2 and Sn/TiO2 films are 3.33 and 3.15 eV, respectively. On the other hand, the electrical conductivity values of undoped TiO2 and Sn/TiO2 films are 0.10 and 0.25 mS.cm−1, respectively. The electrochemical H2 production performance of undoped TiO2 and Sn/TiO2 films is investigated through two different methods: potentiostat measurements and analytical methods. It can be concluded that the Sn/TiO2 film exhibits higher HER performance and H2 production efficiency than the undoped TiO2 film.
掺锡二氧化钛薄膜增强电催化氢气进化
基于金属氧化物纳米复合材料的电催化剂分水技术在氢气进化应用中获得了极大的关注。本文介绍了用于高效制氢的未掺杂二氧化钛和掺锡二氧化钛薄膜(分别为 TiO2 和 Sn/TiO2)。晶体结构分析是通过使用里特维尔德精炼法和威廉姆森-霍尔法分析 XRD 图谱进行的。XRF 扫描用于确认 Sn 和 TiO2 之间的掺杂机制。未掺杂的 TiO2 和 Sn/TiO2 薄膜的带隙能分别为 3.33 和 3.15 eV。另一方面,未掺杂 TiO2 和 Sn/TiO2 薄膜的电导率值分别为 0.10 和 0.25 mS.cm-1。通过恒电位仪测量和分析方法这两种不同的方法研究了未掺杂 TiO2 和 Sn/TiO2 薄膜的电化学产氢性能。结果表明,与未掺杂的 TiO2 薄膜相比,Sn/TiO2 薄膜具有更高的 HER 性能和 H2 生成效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信