Abelian ideals and the variety of Lagrangian subalgebras

IF 0.7 2区 数学 Q2 MATHEMATICS
Sam Evens , Yu Li
{"title":"Abelian ideals and the variety of Lagrangian subalgebras","authors":"Sam Evens ,&nbsp;Yu Li","doi":"10.1016/j.jpaa.2024.107813","DOIUrl":null,"url":null,"abstract":"<div><div>For a semisimple algebraic group <em>G</em> of adjoint type with Lie algebra <span><math><mi>g</mi></math></span> over the complex numbers, we establish a bijection between the set of closed orbits of the group <span><math><mi>G</mi><mo>⋉</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> acting on the variety of Lagrangian subalgebras of <span><math><mi>g</mi><mo>⋉</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and the set of abelian ideals of a fixed Borel subalgebra of <span><math><mi>g</mi></math></span>. In particular, the number of such orbits equals <span><math><msup><mrow><mn>2</mn></mrow><mrow><mtext>rk</mtext><mi>g</mi></mrow></msup></math></span> by Peterson's theorem on abelian ideals.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492400210X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a semisimple algebraic group G of adjoint type with Lie algebra g over the complex numbers, we establish a bijection between the set of closed orbits of the group Gg acting on the variety of Lagrangian subalgebras of gg and the set of abelian ideals of a fixed Borel subalgebra of g. In particular, the number of such orbits equals 2rkg by Peterson's theorem on abelian ideals.
阿贝尔理想与拉格朗日子代数的多样性
对于具有复数上的李代数 g 的邻接型半简代数群 G,我们建立了作用于 g⋉g⁎ 的各种拉格朗日子代数上的群 G⋉g⁎ 的闭轨道集与 g 的固定伯尔子代数的无边际理想集之间的双射关系。特别是,根据彼得森的无边际理想定理,这样的轨道数等于 2rkg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信