The May filtration on THH and faithfully flat descent

IF 0.7 2区 数学 Q2 MATHEMATICS
Liam Keenan
{"title":"The May filtration on THH and faithfully flat descent","authors":"Liam Keenan","doi":"10.1016/j.jpaa.2024.107806","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study descent properties of topological Hochschild homology and topological cyclic homology. In particular, we verify that both of these invariants satisfy faithfully flat descent and 1-connective descent for connective <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-ring spectra. This generalizes a result of Bhatt–Morrow–Scholze from <span><span>[6]</span></span> and a result of Dundas–Rognes from <span><span>[11]</span></span>, respectively. Along the way, we develop some basic theory for cobar constructions and give an alternative presentation of the May filtration on topological Hochschild homology, originally due to Angelini-Knoll–Salch <span><span>[3]</span></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002032","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study descent properties of topological Hochschild homology and topological cyclic homology. In particular, we verify that both of these invariants satisfy faithfully flat descent and 1-connective descent for connective E2-ring spectra. This generalizes a result of Bhatt–Morrow–Scholze from [6] and a result of Dundas–Rognes from [11], respectively. Along the way, we develop some basic theory for cobar constructions and give an alternative presentation of the May filtration on topological Hochschild homology, originally due to Angelini-Knoll–Salch [3].
THH 上的五月过滤和忠实的平缓下降
在本文中,我们研究了拓扑霍赫希尔德同调和拓扑循环同调的下降性质。特别是,我们验证了这两个不变式都满足连通 E2 环谱的忠实平坦下降和 1-connective 下降。这分别推广了[6]中 Bhatt-Morrow-Scholze 的一个结果和[11]中 Dundas-Rognes 的一个结果。在此过程中,我们发展了一些关于科巴构造的基本理论,并给出了拓扑霍赫希尔德同调的梅滤波的另一种表述,该表述最初是由 Angelini-Knoll-Salch [3] 提出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信