{"title":"Jet cavitation-enhanced hydration method for the preparation of magnesium hydroxide","authors":"Maosheng Zuo , Honglei Yu , Dexi Wang , Lihua Fan","doi":"10.1016/j.cep.2024.110003","DOIUrl":null,"url":null,"abstract":"<div><div>During the preparation of magnesium hydroxide via the hydration method, in-situ growth and agglomeration often inhibit the reaction. This study used active magnesium oxide as the raw material and employed jet cavitation technology to enhance the hydration process. Based on the growth process of magnesium hydroxide, the mechanism of jet-enhanced hydration was analyzed. The effects of reaction temperature (<em>T</em>), reaction time (<em>t</em>), solid-liquid ratio (<em>s</em>), and cavitation number (<em>σ</em>) on the hydration rate were investigated. An L<sub>25</sub>(5<sup>4</sup>) orthogonal experiment explored the significance of each factor's impact on the hydration rate. The hydration products were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and a specific surface area analyzer. Results indicate that the factors affecting the hydration rate, in order of significance, are cavitation number > reaction temperature > solid-liquid ratio > reaction time. The optimal process parameters were determined to be a reaction temperature of 70 °C, reaction time of 80 min, solid-liquid ratio of 1:12, and cavitation number of 0.42. Under these conditions, the hydration rate reached 94.87 %, producing well-dispersed lamellar magnesium hydroxide with a narrow particle size distribution (median particle size D50 = 4.511 μm) and a BET specific surface area of 11.345 m²/g.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"205 ","pages":"Article 110003"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003416","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
During the preparation of magnesium hydroxide via the hydration method, in-situ growth and agglomeration often inhibit the reaction. This study used active magnesium oxide as the raw material and employed jet cavitation technology to enhance the hydration process. Based on the growth process of magnesium hydroxide, the mechanism of jet-enhanced hydration was analyzed. The effects of reaction temperature (T), reaction time (t), solid-liquid ratio (s), and cavitation number (σ) on the hydration rate were investigated. An L25(54) orthogonal experiment explored the significance of each factor's impact on the hydration rate. The hydration products were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and a specific surface area analyzer. Results indicate that the factors affecting the hydration rate, in order of significance, are cavitation number > reaction temperature > solid-liquid ratio > reaction time. The optimal process parameters were determined to be a reaction temperature of 70 °C, reaction time of 80 min, solid-liquid ratio of 1:12, and cavitation number of 0.42. Under these conditions, the hydration rate reached 94.87 %, producing well-dispersed lamellar magnesium hydroxide with a narrow particle size distribution (median particle size D50 = 4.511 μm) and a BET specific surface area of 11.345 m²/g.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.