Schrödinger operator with a complex steplike potential

IF 2.4 2区 数学 Q1 MATHEMATICS
Tho Nguyen Duc
{"title":"Schrödinger operator with a complex steplike potential","authors":"Tho Nguyen Duc","doi":"10.1016/j.jde.2024.09.055","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this article is to study pseudospectral properties of the one-dimensional Schrödinger operator perturbed by a complex steplike potential. By constructing the resolvent kernel, we show that the pseudospectrum of this operator is trivial if and only if the imaginary part of the potential is constant. As a by-product, a new method to obtain a sharp resolvent estimate is developed, answering a concern of Henry and Krejčiřík, and a way to construct an optimal pseudomode is discovered, answering a concern of Krejčiřík and Siegl. This article also analyzes the impact of a complex point interaction on the spectrum and the resolvent norm.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006399","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this article is to study pseudospectral properties of the one-dimensional Schrödinger operator perturbed by a complex steplike potential. By constructing the resolvent kernel, we show that the pseudospectrum of this operator is trivial if and only if the imaginary part of the potential is constant. As a by-product, a new method to obtain a sharp resolvent estimate is developed, answering a concern of Henry and Krejčiřík, and a way to construct an optimal pseudomode is discovered, answering a concern of Krejčiřík and Siegl. This article also analyzes the impact of a complex point interaction on the spectrum and the resolvent norm.
具有复杂阶跃势的薛定谔算子
本文旨在研究受复阶跃势扰动的一维薛定谔算子的伪谱性质。通过构建解析核,我们证明了当且仅当势的虚部为常数时,该算子的伪谱是微不足道的。作为副产品,我们开发了一种新方法来获得尖锐的Resolvent估计值,从而回答了Henry和Krejčiřík所关心的问题;我们还发现了一种构建最优伪模的方法,从而回答了Krejčiřík和Siegl所关心的问题。本文还分析了复杂点相互作用对频谱和解析规范的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信