Fracture mechanisms of Al-steel resistance spot welds: The role of intermetallic compound phases

IF 4.7 2区 工程技术 Q1 MECHANICS
{"title":"Fracture mechanisms of Al-steel resistance spot welds: The role of intermetallic compound phases","authors":"","doi":"10.1016/j.engfracmech.2024.110520","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the mechanical and metallographic characteristics of Al-Steel dissimilar resistance spot welds (RSW), with a particular focus on the intermetallic compound (IMC) phases and their impact on fracture mechanisms. Detailed metallographic analyses and novel miniature lap shear tests with in-situ Digital Image Correlation techniques were conducted to observe the crack propagation behavior. The findings revealed that the IMC phases significantly influence the crack path and fracture mechanisms, leading to variations in fracture energy. Specifically, three distinct IMC phases were identified at the weld interface, each exhibiting unique structural and mechanical properties, with corresponding fracture energies of approximately 0.03 kJ/m<sup>2</sup>, 1.1 kJ/m<sup>2</sup>, and 7.5 kJ/m<sup>2</sup>. These variations highlight the critical role of the IMC phase in determining the fracture behavior of the weld. The study further supported the development and validation of a finite element (FE) model, incorporating a Cohesive Zone Model to simulate debonding behavior and the Hosford-Mean fracture criterion to predict ductile fracture in the Al fusion zone, thereby successfully linking local material characteristics to mechanical properties.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006830","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the mechanical and metallographic characteristics of Al-Steel dissimilar resistance spot welds (RSW), with a particular focus on the intermetallic compound (IMC) phases and their impact on fracture mechanisms. Detailed metallographic analyses and novel miniature lap shear tests with in-situ Digital Image Correlation techniques were conducted to observe the crack propagation behavior. The findings revealed that the IMC phases significantly influence the crack path and fracture mechanisms, leading to variations in fracture energy. Specifically, three distinct IMC phases were identified at the weld interface, each exhibiting unique structural and mechanical properties, with corresponding fracture energies of approximately 0.03 kJ/m2, 1.1 kJ/m2, and 7.5 kJ/m2. These variations highlight the critical role of the IMC phase in determining the fracture behavior of the weld. The study further supported the development and validation of a finite element (FE) model, incorporating a Cohesive Zone Model to simulate debonding behavior and the Hosford-Mean fracture criterion to predict ductile fracture in the Al fusion zone, thereby successfully linking local material characteristics to mechanical properties.
铝钢电阻点焊的断裂机理:金属间化合物相的作用
本研究探讨了铝钢异种电阻点焊 (RSW) 的机械和金相特征,尤其关注金属间化合物 (IMC) 相及其对断裂机制的影响。为观察裂纹扩展行为,采用原位数字图像相关技术进行了详细的金相分析和新型微型搭接剪切试验。研究结果表明,IMC 相对裂纹路径和断裂机制有显著影响,从而导致断裂能量的变化。具体来说,在焊接界面上发现了三种不同的 IMC 相,每种相都具有独特的结构和机械性能,相应的断裂能分别约为 0.03 kJ/m2、1.1 kJ/m2 和 7.5 kJ/m2。这些变化凸显了 IMC 相在决定焊缝断裂行为中的关键作用。研究进一步支持了有限元 (FE) 模型的开发和验证,该模型结合了用于模拟脱粘行为的粘合区模型和用于预测铝熔合区韧性断裂的 Hosford-Mean 断裂准则,从而成功地将局部材料特性与机械性能联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信