Meng Zhang , Xutao Wei , Zhenhua An , Ekenechukwu C. Okafor , Thibault F. Guiberti , Jinhua Wang , Zuohua Huang
{"title":"Flame stabilization and emission characteristics of ammonia combustion in lab-scale gas turbine combustors: Recent progress and prospects","authors":"Meng Zhang , Xutao Wei , Zhenhua An , Ekenechukwu C. Okafor , Thibault F. Guiberti , Jinhua Wang , Zuohua Huang","doi":"10.1016/j.pecs.2024.101193","DOIUrl":null,"url":null,"abstract":"<div><div>Global climate change forces all countries to push the process of de-carbonization. Ammonia, which is carbon free and a potential hydrogen carrier, is proposed as a prospective fuel for the power devices to realize the green economy. It also exhibits very good fuel properties, including its storage condition, energy density. However, two main challenges, the difficulties of flame stabilization and potential high fuel NO<sub>x</sub> production, still need to be tackled in its application in gas turbines. In the last decades, valuable investigations were conducted to address characteristics of NH<sub>3</sub>/air flame stabilization in swirl combustors as well as the combustion enhancement by cofiring with active molecule like CH<sub>4</sub> and H<sub>2</sub>, applying plasma assistance. These measures mainly improve the flame resistance to the flow and increase the key radicals at flame base, which may provide possible solutions to the combustion chamber design. The inherent mechanisms of fuel NO<sub>x</sub> production are highlighted by the HNO channel with the presence of OH radical. One promising strategy to mitigate NO<sub>x</sub> in gas-turbine like combustor is the staged combustion by staging the air or fuel, which may also fit for the practical combustion chamber. The high-pressure condition and plasma assistance were found to show positive influence on both flame stabilization and NO<sub>x</sub> control. This review also emphasizes the fundamental research issues for ammonia fuel and proposes some future research prospects towards the development of more robust, reliable, and low NO<sub>x</sub> combustion technologies relevant to gas turbines.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"106 ","pages":"Article 101193"},"PeriodicalIF":32.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128524000510","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Global climate change forces all countries to push the process of de-carbonization. Ammonia, which is carbon free and a potential hydrogen carrier, is proposed as a prospective fuel for the power devices to realize the green economy. It also exhibits very good fuel properties, including its storage condition, energy density. However, two main challenges, the difficulties of flame stabilization and potential high fuel NOx production, still need to be tackled in its application in gas turbines. In the last decades, valuable investigations were conducted to address characteristics of NH3/air flame stabilization in swirl combustors as well as the combustion enhancement by cofiring with active molecule like CH4 and H2, applying plasma assistance. These measures mainly improve the flame resistance to the flow and increase the key radicals at flame base, which may provide possible solutions to the combustion chamber design. The inherent mechanisms of fuel NOx production are highlighted by the HNO channel with the presence of OH radical. One promising strategy to mitigate NOx in gas-turbine like combustor is the staged combustion by staging the air or fuel, which may also fit for the practical combustion chamber. The high-pressure condition and plasma assistance were found to show positive influence on both flame stabilization and NOx control. This review also emphasizes the fundamental research issues for ammonia fuel and proposes some future research prospects towards the development of more robust, reliable, and low NOx combustion technologies relevant to gas turbines.
期刊介绍:
Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science.
PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.