On PGL2(F7) and PSL2(F7) number fields ramified at a single prime

Pub Date : 2024-09-23 DOI:10.1016/j.jnt.2024.08.006
Takeshi Ogasawara , George J. Schaeffer
{"title":"On PGL2(F7) and PSL2(F7) number fields ramified at a single prime","authors":"Takeshi Ogasawara ,&nbsp;George J. Schaeffer","doi":"10.1016/j.jnt.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>We present new examples of <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> number fields ramified at a single prime. To find these number fields we employ the following methods: (i) Specializing a modification of Malle's <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> polynomial, (ii) Modular method: computation of Katz modular forms of weight one over <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>7</mn></mrow></msub></math></span> with prime level, and (iii) Searching for polynomials with prescribed ramification.</div><div>Method (i) quickly generates many <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> number fields unramified at 7 including those fields ramified at only a single prime. Method (ii) can be used to show the existence of <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> or <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> number fields ramified only at primes that divide the level; we can then use method (iii) to find polynomials for those fields in many cases.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present new examples of PGL2(F7) and PSL2(F7) number fields ramified at a single prime. To find these number fields we employ the following methods: (i) Specializing a modification of Malle's PGL2(F7) polynomial, (ii) Modular method: computation of Katz modular forms of weight one over F7 with prime level, and (iii) Searching for polynomials with prescribed ramification.
Method (i) quickly generates many PGL2(F7) number fields unramified at 7 including those fields ramified at only a single prime. Method (ii) can be used to show the existence of PGL2(F7) or PSL2(F7) number fields ramified only at primes that divide the level; we can then use method (iii) to find polynomials for those fields in many cases.
分享
查看原文
关于在单素数处夯实的 PGL2(F7) 和 PSL2(F7) 数域
我们提出了在一个素数上夯实的 PGL2(F7) 和 PSL2(F7) 数域的新例子。为了找到这些数域,我们采用了以下方法:(i) 马勒的 PGL2(F7) 多项式的特殊化修正;(ii) 模块法:计算 F‾7 上权重为一的卡茨模块形式的素级;(iii) 寻找具有规定斜率的多项式。方法(ii)可以用来证明只在平分的素数上有斜线的 PGL2(F7) 或 PSL2(F7) 数域的存在;然后我们可以用方法(iii)在许多情况下为这些域找到多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信