Two subspace methods for frequency sparse graph signals

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Tarek Emmrich, Martina Juhnke, Stefan Kunis
{"title":"Two subspace methods for frequency sparse graph signals","authors":"Tarek Emmrich,&nbsp;Martina Juhnke,&nbsp;Stefan Kunis","doi":"10.1016/j.acha.2024.101711","DOIUrl":null,"url":null,"abstract":"<div><div>We study signals that are sparse in graph spectral domain and develop explicit algorithms to reconstruct the support set as well as partial components from samples on few vertices of the graph. The number of required samples is independent of the total size of the graph and takes only local properties of the graph into account. Our results rely on an operator based framework for subspace methods and become effective when the spectral eigenfunctions are zero-free or linear independent on small sets of the vertices. The latter has recently been addressed using algebraic methods by the first author.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"74 ","pages":"Article 101711"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000885","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study signals that are sparse in graph spectral domain and develop explicit algorithms to reconstruct the support set as well as partial components from samples on few vertices of the graph. The number of required samples is independent of the total size of the graph and takes only local properties of the graph into account. Our results rely on an operator based framework for subspace methods and become effective when the spectral eigenfunctions are zero-free or linear independent on small sets of the vertices. The latter has recently been addressed using algebraic methods by the first author.
频率稀疏图信号的两种子空间方法
我们研究了图谱域中稀疏的信号,并开发了明确的算法,从图中少数顶点的样本中重建支持集和部分成分。所需的样本数量与图的总大小无关,并且只考虑图的局部属性。我们的结果依赖于基于算子的子空间方法框架,当谱特征函数在小的顶点集上无零或线性独立时,我们的结果就会变得有效。第一作者最近使用代数方法解决了后者的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信