{"title":"Filler processing and mixing effects of polyoxymethylene/graphene nanocomposite on tribo-mechanical performances","authors":"Ibrohim Rustamov , Lehong Xiang , Yinshui Xia , Wenfei Peng","doi":"10.1016/j.triboint.2024.110267","DOIUrl":null,"url":null,"abstract":"<div><div>Binary nanocomposites based on polyoxymethylene (POM) and graphene nanoplatelet (GNP) were fabricated to improve the tribo-mechanical performances of high-precision sliding parts in linear drive system applications. Liquid-phase exfoliation technique and surface modification by 3-aminopropyltriethoxysilane (APTES) were used to process GNP filler for improved endowment of POM/e-GNP matrix-filler interfacial adhesion. Results show that processed e-GNP at optimal 0.5 wt% loading is distributed uniformly in the matrix and enables excellent stress-transfer during the mechanical loading, increasing flexural modulus, impact strength and elongation at break by 51.3 %, 41.9 % and 24.5 %, respectively, in contrast to neat POM. Simultaneously, coefficient of friction (COF) and specific wear rate (<span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) of POM in ambient temperature were also reduced substantially by e-GNP incorporation under both dry (COF by 19.5 %, <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> by 40.6 %) and grease lubricated (COF by 38.2 %, <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> by 76.4 %) sliding conditions. Smoothened wear surface and formation of homogeneous transfer film on the steel counterface were accounted for large specific surface coverage and low-shear strength of e-GNP at the contact interface, especially during the dry sliding. In addition, the accumulated energy dissipation by frictional work was calculated in the sliding interfaces based on friction force-displacement (F-D) hysteresis loop. However, pristine POM/GNP exhibited poor matrix-filler adhesion and deteriorated composite properties due to the aggregated structure which can cause subsurface defects and serve as a failure site. The proposed new material would extend the applications of precision parts by overcoming the tribo-mechanical related issues for quieter and accurate linear motion systems.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"201 ","pages":"Article 110267"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24010193","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Binary nanocomposites based on polyoxymethylene (POM) and graphene nanoplatelet (GNP) were fabricated to improve the tribo-mechanical performances of high-precision sliding parts in linear drive system applications. Liquid-phase exfoliation technique and surface modification by 3-aminopropyltriethoxysilane (APTES) were used to process GNP filler for improved endowment of POM/e-GNP matrix-filler interfacial adhesion. Results show that processed e-GNP at optimal 0.5 wt% loading is distributed uniformly in the matrix and enables excellent stress-transfer during the mechanical loading, increasing flexural modulus, impact strength and elongation at break by 51.3 %, 41.9 % and 24.5 %, respectively, in contrast to neat POM. Simultaneously, coefficient of friction (COF) and specific wear rate () of POM in ambient temperature were also reduced substantially by e-GNP incorporation under both dry (COF by 19.5 %, by 40.6 %) and grease lubricated (COF by 38.2 %, by 76.4 %) sliding conditions. Smoothened wear surface and formation of homogeneous transfer film on the steel counterface were accounted for large specific surface coverage and low-shear strength of e-GNP at the contact interface, especially during the dry sliding. In addition, the accumulated energy dissipation by frictional work was calculated in the sliding interfaces based on friction force-displacement (F-D) hysteresis loop. However, pristine POM/GNP exhibited poor matrix-filler adhesion and deteriorated composite properties due to the aggregated structure which can cause subsurface defects and serve as a failure site. The proposed new material would extend the applications of precision parts by overcoming the tribo-mechanical related issues for quieter and accurate linear motion systems.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.