Chan Woo Song, Mina Kwon, Jong Myoung Park, Hyohak Song
{"title":"Fermentative production of 3-hydroxypropionic acid by using metabolically engineered Klebsiella pneumoniae strains","authors":"Chan Woo Song, Mina Kwon, Jong Myoung Park, Hyohak Song","doi":"10.1016/j.bej.2024.109516","DOIUrl":null,"url":null,"abstract":"<div><div>3-Hydroxypropionic acid (3-HP) is an industrially important platform chemical for super-absorbent or biodegradable polymers. Its production via biological methods is expected to be more competitive than chemical methods. <em>Klebsiella pneumoniae</em> is the most promising host due to its innate capabilities for 3-HP and vitamin-B12 production, ease of culture, and ease of engineering. In this study, step-by-step metabolic engineering and fermentation technologies were used to enhance the production of 3-HP. <em>K. pneumoniae</em>-derived <em>ydcW</em> gene was overexpressed using a plasmid after screening candidate genes. Major competing pathways encoded by <em>dhaT</em>, <em>yqhD</em>, <em>ldhA</em>, <em>glpK</em>, <em>poxB</em>, and <em>pta-ackA</em> were blocked. Additionally, it was demonstrated that simultaneous reinforcement of two native aldehyde dehydrogenase encoded by the <em>ydcW</em> gene preferring NADPH and the <em>puuC</em> gene preferring NADH, synergistically improved 3-HP production. Additional reinforcement of the <em>acs</em> gene to reduce acetate accumulation resulted in 93.7 g/L of 3-HP with a yield of 0.42 g/g·glycerol over a 72-h fed-batch fermentation. This performance is deemed sufficient for industrial applications.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109516"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003036","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
3-Hydroxypropionic acid (3-HP) is an industrially important platform chemical for super-absorbent or biodegradable polymers. Its production via biological methods is expected to be more competitive than chemical methods. Klebsiella pneumoniae is the most promising host due to its innate capabilities for 3-HP and vitamin-B12 production, ease of culture, and ease of engineering. In this study, step-by-step metabolic engineering and fermentation technologies were used to enhance the production of 3-HP. K. pneumoniae-derived ydcW gene was overexpressed using a plasmid after screening candidate genes. Major competing pathways encoded by dhaT, yqhD, ldhA, glpK, poxB, and pta-ackA were blocked. Additionally, it was demonstrated that simultaneous reinforcement of two native aldehyde dehydrogenase encoded by the ydcW gene preferring NADPH and the puuC gene preferring NADH, synergistically improved 3-HP production. Additional reinforcement of the acs gene to reduce acetate accumulation resulted in 93.7 g/L of 3-HP with a yield of 0.42 g/g·glycerol over a 72-h fed-batch fermentation. This performance is deemed sufficient for industrial applications.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.