Hussein A. Kazem , Miqdam T. Chaichan , Ali H.A. Al-Waeli , K. Sopian , Naser W. Alnaser , Waheeb E. Alnaser
{"title":"Energy enhancement of building-integrated photovoltaic/thermal systems: A systematic review","authors":"Hussein A. Kazem , Miqdam T. Chaichan , Ali H.A. Al-Waeli , K. Sopian , Naser W. Alnaser , Waheeb E. Alnaser","doi":"10.1016/j.solcom.2024.100093","DOIUrl":null,"url":null,"abstract":"<div><div>In urban areas with limited space, harnessing renewable energy, especially solar energy, can be a challenge. However, we can overcome this obstacle by using building facades to generate energy. Buildings significantly contribute to global energy consumption and greenhouse gas emissions. They require energy for various processes, both electrical and thermal. To address this, we can use photovoltaic/thermal (PV/T) systems, which can simultaneously produce electrical and thermal energies. By circulating a working fluid within the system, the surface temperatures of PV panels can be reduced, improving electrical efficiency. Integrating PV/T systems into building facades, known as building-integrated PV/T (BIPV/T) systems, enables efficient energy production and enhances the overall energy consumption of buildings.</div></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"12 ","pages":"Article 100093"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940024000274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In urban areas with limited space, harnessing renewable energy, especially solar energy, can be a challenge. However, we can overcome this obstacle by using building facades to generate energy. Buildings significantly contribute to global energy consumption and greenhouse gas emissions. They require energy for various processes, both electrical and thermal. To address this, we can use photovoltaic/thermal (PV/T) systems, which can simultaneously produce electrical and thermal energies. By circulating a working fluid within the system, the surface temperatures of PV panels can be reduced, improving electrical efficiency. Integrating PV/T systems into building facades, known as building-integrated PV/T (BIPV/T) systems, enables efficient energy production and enhances the overall energy consumption of buildings.