Jesús Polo , Shukla Poddar , Noelia Simal , Jesús Ballestrín , Aitor Marzo , Merlinde Kay , Elena Carra
{"title":"Solar tower power generation under future attenuation and climate scenarios","authors":"Jesús Polo , Shukla Poddar , Noelia Simal , Jesús Ballestrín , Aitor Marzo , Merlinde Kay , Elena Carra","doi":"10.1016/j.rser.2024.114997","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a novel analysis of the potential impact of atmospheric attenuation in the performance of solar tower plants for future climate change scenarios (2030–2060). Atmospheric attenuation has been estimated from aerosol optical depth information in CMIP6 climatic models for several scenarios (optimistic and pessimistic in terms of mitigation actions taken). Atmospheric attenuation data derived from CMIP6 models was evaluated using the extensive and reliable experimental database at PSA (Plataforma Solar de Almería). Detailed modeling of a solar tower plant is also performed for the conditions at PSA showing a decrease in annual power production less than 2 % for 2030–2060 period. A global impact of atmospheric attenuation is analyzed in relative terms and global maps of future attenuation shows the specific regions more adversely affected in the optimistic and pessimistic future scenarios. According to impact of atmospheric attenuation in solar field efficiency, these results may help in the future planning of deployment for solar tower plants.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"207 ","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124007238","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a novel analysis of the potential impact of atmospheric attenuation in the performance of solar tower plants for future climate change scenarios (2030–2060). Atmospheric attenuation has been estimated from aerosol optical depth information in CMIP6 climatic models for several scenarios (optimistic and pessimistic in terms of mitigation actions taken). Atmospheric attenuation data derived from CMIP6 models was evaluated using the extensive and reliable experimental database at PSA (Plataforma Solar de Almería). Detailed modeling of a solar tower plant is also performed for the conditions at PSA showing a decrease in annual power production less than 2 % for 2030–2060 period. A global impact of atmospheric attenuation is analyzed in relative terms and global maps of future attenuation shows the specific regions more adversely affected in the optimistic and pessimistic future scenarios. According to impact of atmospheric attenuation in solar field efficiency, these results may help in the future planning of deployment for solar tower plants.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.