Ali Feezan , Samina Afzal , Syed Muhammad Shoaib , Muhammad Sajid Hamid Akash , Kanwal Rehman , Ahmed Nadeem , Sabry M. Attia , Asif Shahzad
{"title":"Impact of lead and nickel contamination on metabolic health: Associations with diabetes mellitus in a pakistani cohort","authors":"Ali Feezan , Samina Afzal , Syed Muhammad Shoaib , Muhammad Sajid Hamid Akash , Kanwal Rehman , Ahmed Nadeem , Sabry M. Attia , Asif Shahzad","doi":"10.1016/j.emcon.2024.100419","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental exposure to heavy metals, particularly lead (Pb) and nickel (Ni), is implicated in chronic metabolic diseases, including diabetes mellitus (DM). This cross-sectional study assessed the Pb and Ni levels in groundwater using ICP-OES and urine samples collected from 2688 participants using ICP-MS. We aimed to establish the associations between Pb and Ni exposure and risk factors for DM and metabolic disorders. Groundwater analysis revealed the elevated levels of total dissolved solids, electrical conductivity, hardness, turbidity, Ni, and Pb, exceeding the WHO guidelines. The mean concentration of Pb in groundwater samples of study area was 0.025 mg/L which was higher than the WHO permissible limit of 0.01 mg/L. Similarly the mean concentration of Ni in groundwater samples of study area was 0.038 mg/L which was also higher than the WHO permissible limit of 0.02 mg/L. In human study, participants, categorized into Pb-detected and Ni-detected groups, exhibited significantly higher Pb and Ni levels and non-exposed non-diabetic groups. Ni-detected diabetics showed elevated Ni levels compared to non-exposed non-diabetics. Similarly, Pb-detected diabetics showed elevated Pb levels compared to non-exposed non-diabetics. These findings suggest a potential contribution of Pb and Ni exposure to DM development. The study also identified associations between heavy metal exposure and disruptions in various biomarkers related to DM, lipid profile, inflammation, oxidative stress, liver function, and kidney function. Pb-detected diabetics demonstrated elevated levels of glycemic index biomarkers, including fasting blood glucose (<em>P</em> < 0.0001) and HbA1c (<em>P</em> < 0.0001). Ni-detected diabetics exhibited increased inflammatory markers, such as CRP (<em>P</em> < 0.0001) and IL-6 (<em>P</em> < 0.0001). Both Pb and Ni exposure were associated with dyslipidemia, as indicated by elevated levels of total cholesterol (<em>P</em> < 0.0001) and LDL (<em>P</em> < 0.0001). Additionally, heavy metal exposure was linked to impaired liver and kidney function, supported by elevated levels of AST (<em>P</em> < 0.0001), ALT (<em>P</em> < 0.0001), creatinine (<em>P</em> < 0.0001), and blood urea nitrogen (<em>P</em> < 0.0001), with Pb exposure also associated with higher levels of MDA (<em>P</em> < 0.0001). Correlation analyses demonstrated significant associations between urinary Pb and Ni concentrations and various biomarkers related to DM and metabolic disorders. In conclusion, this study provides substantial evidence linking Pb and Ni exposure to the development of DM and metabolic disorders in a Pakistani population, emphasizing the need for strict regulations and preventive measures to reduce heavy metal contamination and safeguard public health. Future longitudinal studies and interventions are warranted to elucidate mechanistic links between heavy metal exposure and metabolic diseases.</div></div>","PeriodicalId":11539,"journal":{"name":"Emerging Contaminants","volume":"11 1","pages":"Article 100419"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Contaminants","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405665024001203","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental exposure to heavy metals, particularly lead (Pb) and nickel (Ni), is implicated in chronic metabolic diseases, including diabetes mellitus (DM). This cross-sectional study assessed the Pb and Ni levels in groundwater using ICP-OES and urine samples collected from 2688 participants using ICP-MS. We aimed to establish the associations between Pb and Ni exposure and risk factors for DM and metabolic disorders. Groundwater analysis revealed the elevated levels of total dissolved solids, electrical conductivity, hardness, turbidity, Ni, and Pb, exceeding the WHO guidelines. The mean concentration of Pb in groundwater samples of study area was 0.025 mg/L which was higher than the WHO permissible limit of 0.01 mg/L. Similarly the mean concentration of Ni in groundwater samples of study area was 0.038 mg/L which was also higher than the WHO permissible limit of 0.02 mg/L. In human study, participants, categorized into Pb-detected and Ni-detected groups, exhibited significantly higher Pb and Ni levels and non-exposed non-diabetic groups. Ni-detected diabetics showed elevated Ni levels compared to non-exposed non-diabetics. Similarly, Pb-detected diabetics showed elevated Pb levels compared to non-exposed non-diabetics. These findings suggest a potential contribution of Pb and Ni exposure to DM development. The study also identified associations between heavy metal exposure and disruptions in various biomarkers related to DM, lipid profile, inflammation, oxidative stress, liver function, and kidney function. Pb-detected diabetics demonstrated elevated levels of glycemic index biomarkers, including fasting blood glucose (P < 0.0001) and HbA1c (P < 0.0001). Ni-detected diabetics exhibited increased inflammatory markers, such as CRP (P < 0.0001) and IL-6 (P < 0.0001). Both Pb and Ni exposure were associated with dyslipidemia, as indicated by elevated levels of total cholesterol (P < 0.0001) and LDL (P < 0.0001). Additionally, heavy metal exposure was linked to impaired liver and kidney function, supported by elevated levels of AST (P < 0.0001), ALT (P < 0.0001), creatinine (P < 0.0001), and blood urea nitrogen (P < 0.0001), with Pb exposure also associated with higher levels of MDA (P < 0.0001). Correlation analyses demonstrated significant associations between urinary Pb and Ni concentrations and various biomarkers related to DM and metabolic disorders. In conclusion, this study provides substantial evidence linking Pb and Ni exposure to the development of DM and metabolic disorders in a Pakistani population, emphasizing the need for strict regulations and preventive measures to reduce heavy metal contamination and safeguard public health. Future longitudinal studies and interventions are warranted to elucidate mechanistic links between heavy metal exposure and metabolic diseases.
期刊介绍:
Emerging Contaminants is an outlet for world-leading research addressing problems associated with environmental contamination caused by emerging contaminants and their solutions. Emerging contaminants are defined as chemicals that are not currently (or have been only recently) regulated and about which there exist concerns regarding their impact on human or ecological health. Examples of emerging contaminants include disinfection by-products, pharmaceutical and personal care products, persistent organic chemicals, and mercury etc. as well as their degradation products. We encourage papers addressing science that facilitates greater understanding of the nature, extent, and impacts of the presence of emerging contaminants in the environment; technology that exploits original principles to reduce and control their environmental presence; as well as the development, implementation and efficacy of national and international policies to protect human health and the environment from emerging contaminants.