Yang Chen , Dechang Pi , Shengxiang Yang , Yue Xu , Bi Wang , Yintong Wang
{"title":"A multi-strategy optimizer for energy minimization of multi-UAV-assisted mobile edge computing","authors":"Yang Chen , Dechang Pi , Shengxiang Yang , Yue Xu , Bi Wang , Yintong Wang","doi":"10.1016/j.swevo.2024.101748","DOIUrl":null,"url":null,"abstract":"<div><div>Disasters in remote areas often cause damage to communication facilities, which presents significant challenges for rescue efforts. As flexible mobile devices, unmanned aerial vehicles (UAVs) can provide temporary network services to address this issue. This paper studies the use of UAVs as mobile base stations to offer offload computing services for disaster relief devices in affected areas. To ensure reliable communication between disaster relief devices and UAVs, we construct a multi-UAV-assisted mobile edge computing (MEC) system with the objective of minimizing system energy consumption. Inspired by swarm intelligence principles, we propose a multi-strategy optimizer (MSO) that defines various population search functions and employs superior neighborhood methods for population updates. Experimental results demonstrate that MSO achieves superior system energy efficiency and exhibits greater stability compared to several state-of-the-art swarm intelligence algorithms.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101748"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002864","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Disasters in remote areas often cause damage to communication facilities, which presents significant challenges for rescue efforts. As flexible mobile devices, unmanned aerial vehicles (UAVs) can provide temporary network services to address this issue. This paper studies the use of UAVs as mobile base stations to offer offload computing services for disaster relief devices in affected areas. To ensure reliable communication between disaster relief devices and UAVs, we construct a multi-UAV-assisted mobile edge computing (MEC) system with the objective of minimizing system energy consumption. Inspired by swarm intelligence principles, we propose a multi-strategy optimizer (MSO) that defines various population search functions and employs superior neighborhood methods for population updates. Experimental results demonstrate that MSO achieves superior system energy efficiency and exhibits greater stability compared to several state-of-the-art swarm intelligence algorithms.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.