Qingqiong Cai , Shinya Fujita , Henry Liu , Boram Park
{"title":"Monochromatic k-connection of graphs","authors":"Qingqiong Cai , Shinya Fujita , Henry Liu , Boram Park","doi":"10.1016/j.dam.2024.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>An edge-coloured path is <em>monochromatic</em> if all of its edges have the same colour. For a <span><math><mi>k</mi></math></span>-connected graph <span><math><mi>G</mi></math></span>, the <em>monochromatic</em> <span><math><mi>k</mi></math></span><em>-connection number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>m</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the maximum number of colours in an edge-colouring of <span><math><mi>G</mi></math></span> such that, any two vertices are connected by <span><math><mi>k</mi></math></span> internally vertex-disjoint monochromatic paths. In this paper, we shall study the parameter <span><math><mrow><mi>m</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We obtain bounds for <span><math><mrow><mi>m</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, for general graphs <span><math><mi>G</mi></math></span>. We also compute <span><math><mrow><mi>m</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> exactly when <span><math><mi>k</mi></math></span> is small, and <span><math><mi>G</mi></math></span> is a graph on <span><math><mi>n</mi></math></span> vertices, with a spanning <span><math><mi>k</mi></math></span>-connected subgraph having the minimum possible number of edges, namely <span><math><mrow><mo>⌈</mo><mfrac><mrow><mi>k</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span>. We prove a similar result when <span><math><mi>G</mi></math></span> is a bipartite graph.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An edge-coloured path is monochromatic if all of its edges have the same colour. For a -connected graph , the monochromatic-connection number of , denoted by , is the maximum number of colours in an edge-colouring of such that, any two vertices are connected by internally vertex-disjoint monochromatic paths. In this paper, we shall study the parameter . We obtain bounds for , for general graphs . We also compute exactly when is small, and is a graph on vertices, with a spanning -connected subgraph having the minimum possible number of edges, namely . We prove a similar result when is a bipartite graph.
如果一条边缘着色的路径的所有边缘颜色相同,那么这条路径就是单色的。对于 k 个连接图 G,G 的单色 k 连接数(用 mck(G) 表示)是指在 G 的边缘颜色中,任意两个顶点通过 k 个内部顶点相交的单色路径连接的最大颜色数。本文将研究 mck(G) 参数。对于一般图 G,我们得到了 mck(G) 的边界。当 k 很小时,我们也能精确计算 mck(G)。当 G 是 n 个顶点上的图时,有一个跨 k 连接的子图具有尽可能少的边数,即 ⌈kn2⌉。当 G 是双向图时,我们会证明类似的结果。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.