Thermal insulating, flame retardant, and superhydrophobic polybenzoxazine/silica aerogels fabricated in water-ethanol solvent using eco-friendly method
Zeyu Li , Yunyun Xiao , Saihui Liu , Jinlong Zhou , Sizhao Zhang , Liangjun Li , Jian Feng , Guihua Tang
{"title":"Thermal insulating, flame retardant, and superhydrophobic polybenzoxazine/silica aerogels fabricated in water-ethanol solvent using eco-friendly method","authors":"Zeyu Li , Yunyun Xiao , Saihui Liu , Jinlong Zhou , Sizhao Zhang , Liangjun Li , Jian Feng , Guihua Tang","doi":"10.1016/j.coco.2024.102106","DOIUrl":null,"url":null,"abstract":"<div><div>Polybenzoxazine (PBz) aerogels have garnered considerable attention as an innovative and excellent thermal insulation material, celebrated for its lightweight, low thermal conductivity, and outstanding mechanical properties. However, the use of high boiling point toxic solvents in the preparation process requires a cumbersome solvent exchange procedure coupled with insufficient flame-retardant properties, which hinder the potential application of PBz aerogels. Herein, we employed tetraethyl orthosilicate (TEOS) into PBz using an easy, eco-friendly, and cost-less process to achieve hybrid structure polybenzoxazine/silica (PBz/SiO<sub>2</sub>) aerogels, by thermal catalysis (72 °C) ring-opening polymerization and polycondensation in water-ethanol solvent without any catalysts. The resulting PBz/SiO<sub>2</sub> aerogels were characterized with low density (0.181 g/cm<sup>3</sup>), low thermal conductivity (0.0315 W/(m·K)), excellent flame-retardancy (PHRR value of 32.3 W/g and THR value of 6.3 kJ/g), and superhydrophobicity (the water contact angle up to 155°). Environment-friendly preparation strategy for the PBz/SiO<sub>2</sub> aerogels with excellent comprehensive performance, poised to play a pivotal role in energy-saving buildings and fire-resistant applications.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"51 ","pages":"Article 102106"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924002973","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Polybenzoxazine (PBz) aerogels have garnered considerable attention as an innovative and excellent thermal insulation material, celebrated for its lightweight, low thermal conductivity, and outstanding mechanical properties. However, the use of high boiling point toxic solvents in the preparation process requires a cumbersome solvent exchange procedure coupled with insufficient flame-retardant properties, which hinder the potential application of PBz aerogels. Herein, we employed tetraethyl orthosilicate (TEOS) into PBz using an easy, eco-friendly, and cost-less process to achieve hybrid structure polybenzoxazine/silica (PBz/SiO2) aerogels, by thermal catalysis (72 °C) ring-opening polymerization and polycondensation in water-ethanol solvent without any catalysts. The resulting PBz/SiO2 aerogels were characterized with low density (0.181 g/cm3), low thermal conductivity (0.0315 W/(m·K)), excellent flame-retardancy (PHRR value of 32.3 W/g and THR value of 6.3 kJ/g), and superhydrophobicity (the water contact angle up to 155°). Environment-friendly preparation strategy for the PBz/SiO2 aerogels with excellent comprehensive performance, poised to play a pivotal role in energy-saving buildings and fire-resistant applications.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.