Rui Wang , Xiuqin Zhang , Mengfei Yuan , De-Yi Wang , Jing Zhang , Ye-Tang Pan
{"title":"Fire retardancy of epoxy composites: A comparative investigation on the influence of porous structure and transition metal of metal-organic framework","authors":"Rui Wang , Xiuqin Zhang , Mengfei Yuan , De-Yi Wang , Jing Zhang , Ye-Tang Pan","doi":"10.1016/j.coco.2024.102087","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) are crystalline porous materials constructed by metal nodes and organic linkers. A series of key features such as high surface area, catalytic performance provide a platform for preparing MOF-based fire retardants (FRs). However, understanding the role of the porous structure and catalytic metal species remains a key issue towards the fire retardant mechanism of MOFs. This work systematically studied the difference between the performance of a zirconium based MOF(UiO-66), its derived porous zirconium oxide (U-ZrO<sub>2</sub>), and commercial ZrO<sub>2</sub> (C-ZrO<sub>2</sub>), in imparting fire retardancy, suppressing smoke and charring property towards epoxy. With the presence of 3 wt% porous U-ZrO<sub>2</sub>, EP/3U-ZrO<sub>2</sub> sample showed better performance in suppressing heat (10 % reduction) and toxic carbon monoxide (14 % reduction) than that of EP/3C-ZrO<sub>2</sub> due to the “tortuous path” effect and formation of a compact char. Moreover, a greater number of exposed catalytic sites on MOF compared with thermally treated metal oxide significantly reduced total smoke production (TSP) of the EP/MOF sample by 38 %. Catalytic carbonization attributed to the great number of metal sites on MOF is crucial in providing compact char residue, thereby suppressing smoke for EP. In perspective, this work opens a window for understanding the fire retardant mechanism of MOF-based FR towards polymers.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245221392400278X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials constructed by metal nodes and organic linkers. A series of key features such as high surface area, catalytic performance provide a platform for preparing MOF-based fire retardants (FRs). However, understanding the role of the porous structure and catalytic metal species remains a key issue towards the fire retardant mechanism of MOFs. This work systematically studied the difference between the performance of a zirconium based MOF(UiO-66), its derived porous zirconium oxide (U-ZrO2), and commercial ZrO2 (C-ZrO2), in imparting fire retardancy, suppressing smoke and charring property towards epoxy. With the presence of 3 wt% porous U-ZrO2, EP/3U-ZrO2 sample showed better performance in suppressing heat (10 % reduction) and toxic carbon monoxide (14 % reduction) than that of EP/3C-ZrO2 due to the “tortuous path” effect and formation of a compact char. Moreover, a greater number of exposed catalytic sites on MOF compared with thermally treated metal oxide significantly reduced total smoke production (TSP) of the EP/MOF sample by 38 %. Catalytic carbonization attributed to the great number of metal sites on MOF is crucial in providing compact char residue, thereby suppressing smoke for EP. In perspective, this work opens a window for understanding the fire retardant mechanism of MOF-based FR towards polymers.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.