{"title":"Effects of carbon dioxide blasting on hot dry rock reservoirs considering thermal damage","authors":"","doi":"10.1016/j.geothermics.2024.103174","DOIUrl":null,"url":null,"abstract":"<div><div>A cutting-edge technique for igniting hot dry rock (HDR) reservoirs is carbon dioxide blasting. The cooling effect of the drilling fluid was taken into consideration during a numerical simulation of the action range of carbon dioxide blasting-induced cracking. A temperature difference was used to determine the reservoir's material properties. Additionally, temperature distribution functions were used to create the temperature field in the reservoir. The blasting load is calculated using the pertinent theories and formulas of explosive blasting, and the process of blasting carbon dioxide to excite the HDR reservoir is modeled using COMSOL. The findings show that several stress concentrations take place during the blasting process. The fracture zone is created by the tensile stress concentration outside of the crushing zone, whereas the compressive stress concentration close to the blast hole creates the crushing zone. Furthermore, the effectiveness of carbon dioxide blasting fracturing would be affected by the beginning temperature and pressure plate thickness. Although the scope of the fracture zone is mostly unchanged, the initial temperature has a significant impact on the blasting crushing zone. The size of the crushing zone, which determines how the blasting fracture zone is distributed, is unaffected by the pressure plate's thickness.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524002608","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A cutting-edge technique for igniting hot dry rock (HDR) reservoirs is carbon dioxide blasting. The cooling effect of the drilling fluid was taken into consideration during a numerical simulation of the action range of carbon dioxide blasting-induced cracking. A temperature difference was used to determine the reservoir's material properties. Additionally, temperature distribution functions were used to create the temperature field in the reservoir. The blasting load is calculated using the pertinent theories and formulas of explosive blasting, and the process of blasting carbon dioxide to excite the HDR reservoir is modeled using COMSOL. The findings show that several stress concentrations take place during the blasting process. The fracture zone is created by the tensile stress concentration outside of the crushing zone, whereas the compressive stress concentration close to the blast hole creates the crushing zone. Furthermore, the effectiveness of carbon dioxide blasting fracturing would be affected by the beginning temperature and pressure plate thickness. Although the scope of the fracture zone is mostly unchanged, the initial temperature has a significant impact on the blasting crushing zone. The size of the crushing zone, which determines how the blasting fracture zone is distributed, is unaffected by the pressure plate's thickness.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.