One-step hydrothermal synthesis of ternary heterostructure stannic sulfide - bismuth sulfide - bismuth oxychloride (SnS2-Bi2S3-BiOCl) composite loaded on carbon felt for highly efficient piezocatalytic degradation of organic dyes and antibiotics

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wen-Ming Li , Hui Zhang , Jia-Le Yao , Xiang-Tao Xuan , Hong-Li Wang , Chen-Min Dai
{"title":"One-step hydrothermal synthesis of ternary heterostructure stannic sulfide - bismuth sulfide - bismuth oxychloride (SnS2-Bi2S3-BiOCl) composite loaded on carbon felt for highly efficient piezocatalytic degradation of organic dyes and antibiotics","authors":"Wen-Ming Li ,&nbsp;Hui Zhang ,&nbsp;Jia-Le Yao ,&nbsp;Xiang-Tao Xuan ,&nbsp;Hong-Li Wang ,&nbsp;Chen-Min Dai","doi":"10.1016/j.surfin.2024.105198","DOIUrl":null,"url":null,"abstract":"<div><div>The piezoelectric catalysis technique harnesses naturally occurring vibrational energy to remove organic pollutants from water in an environmentally friendly manner. In this study, a ternary heterostructure SnS<sub>2</sub>-Bi<sub>2</sub>S<sub>3</sub>-BiOCl (S-B-B) composite was successfully synthesized via a one-step hydrothermal method and simultaneously deposited on the surface of carbon felt. The S-B-B heterojunction exhibits significantly enhanced piezoelectric catalytic activity compared to SnS<sub>2</sub>, Bi<sub>2</sub>S<sub>3</sub>, and BiOCl, achieving a k value of 2.26 × 10⁻² min⁻¹ and a degradation efficiency of 89.9 % towards methyl orange (MO) dye after 100 min of ultrasonic degradation. This performance is markedly superior to the individual components, with k values of 3.80 × 10⁻⁴ min⁻¹ for SnS<sub>2</sub>, 1.16 × 10⁻² min⁻¹ for BiOCl, and 1.31 × 10⁻² min⁻¹ for Bi<sub>2</sub>S<sub>3</sub>. Moreover, in addition to levofloxacin (LV), it demonstrates high removal efficiency for Congo red (CR), methylene blue (MB), tetracycline hydrochloride (TC-HCl), and sulfanilamide (SN). Furthermore, it can be loaded onto carbon felt for use in piezoelectric catalytic degradation of dyeing wastewater, highlighting its potential for practical applications. Trapping experiments suggest that singlet oxygen non-radicals and hydroxyl radicals play a critical role in the piezocatalytic degradation of organic contaminants. Based on LC-MS results, a possible degradation pathway for MO dye is proposed. Furthermore, DFT calculations confirm electron transfer from Bi<sub>2</sub>S<sub>3</sub> to SnS<sub>2</sub> and BiOCl at the interfaces between SnS<sub>2</sub>/Bi<sub>2</sub>S<sub>3</sub> and BiOCl/Bi<sub>2</sub>S<sub>3</sub>. The piezoelectric mechanism of the S-B-B composite is also elucidated, highlighting the interaction and electron dynamics within the heterostructure.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024013543","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The piezoelectric catalysis technique harnesses naturally occurring vibrational energy to remove organic pollutants from water in an environmentally friendly manner. In this study, a ternary heterostructure SnS2-Bi2S3-BiOCl (S-B-B) composite was successfully synthesized via a one-step hydrothermal method and simultaneously deposited on the surface of carbon felt. The S-B-B heterojunction exhibits significantly enhanced piezoelectric catalytic activity compared to SnS2, Bi2S3, and BiOCl, achieving a k value of 2.26 × 10⁻² min⁻¹ and a degradation efficiency of 89.9 % towards methyl orange (MO) dye after 100 min of ultrasonic degradation. This performance is markedly superior to the individual components, with k values of 3.80 × 10⁻⁴ min⁻¹ for SnS2, 1.16 × 10⁻² min⁻¹ for BiOCl, and 1.31 × 10⁻² min⁻¹ for Bi2S3. Moreover, in addition to levofloxacin (LV), it demonstrates high removal efficiency for Congo red (CR), methylene blue (MB), tetracycline hydrochloride (TC-HCl), and sulfanilamide (SN). Furthermore, it can be loaded onto carbon felt for use in piezoelectric catalytic degradation of dyeing wastewater, highlighting its potential for practical applications. Trapping experiments suggest that singlet oxygen non-radicals and hydroxyl radicals play a critical role in the piezocatalytic degradation of organic contaminants. Based on LC-MS results, a possible degradation pathway for MO dye is proposed. Furthermore, DFT calculations confirm electron transfer from Bi2S3 to SnS2 and BiOCl at the interfaces between SnS2/Bi2S3 and BiOCl/Bi2S3. The piezoelectric mechanism of the S-B-B composite is also elucidated, highlighting the interaction and electron dynamics within the heterostructure.

Abstract Image

一步水热法合成负载在碳毡上的三元异质结构硫化锡-硫化铋-氧氯化铋(SnS2-Bi2S3-BiOCl)复合材料,用于高效压电催化降解有机染料和抗生素
压电催化技术利用自然产生的振动能量,以环保的方式去除水中的有机污染物。本研究通过一步水热法成功合成了 SnS2-Bi2S3-BiOCl (S-B-B) 三元异质结构复合材料,并同时将其沉积在碳毡表面。与 SnS2、Bi2S3 和 BiOCl 相比,S-B-B 异质结的压电催化活性明显增强,在超声降解 100 分钟后,其 k 值达到 2.26 × 10-² min-¹,对甲基橙(MO)染料的降解效率达到 89.9%。这一性能明显优于单个成分,SnS2 的 k 值为 3.80 × 10-⁴ min-¹,BiOCl 为 1.16 × 10-² min-¹,Bi2S3 为 1.31 × 10-² min-¹。此外,除左氧氟沙星(LV)外,它对刚果红(CR)、亚甲基蓝(MB)、盐酸四环素(TC-HCl)和磺胺(SN)的去除效率也很高。此外,它还可以负载到碳毡上,用于压电催化降解印染废水,突出了其实际应用的潜力。诱捕实验表明,单线态氧非自由基和羟基自由基在压电催化降解有机污染物的过程中起着至关重要的作用。根据 LC-MS 结果,提出了 MO 染料可能的降解途径。此外,DFT 计算证实了在 SnS2/Bi2S3 和 BiOCl/Bi2S3 之间的界面上电子从 Bi2S3 转移到 SnS2 和 BiOCl。此外,还阐明了 S-B-B 复合材料的压电机制,强调了异质结构内的相互作用和电子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信