{"title":"A lattice Boltzmann model with sharp interface tracking for the motion and growth of dendrites in non-equilibrium solidification of alloys","authors":"Shilin Mao , Mengdan Hu , Wei Chen , Dongke Sun","doi":"10.1016/j.matdes.2024.113362","DOIUrl":null,"url":null,"abstract":"<div><div>A lattice Boltzmann model (LBM) with sharp interface tracking is developed to simulate the motion and growth of dendrites in non-equilibrium solidification of alloys. The model is validated through comparative analysis with the drafting-kissing-tumbling (DKT) phenomena of two and three particles and the continuous growth model (CGM), and demonstrates its computational efficiency advantage without compromising accuracy by comparison with the multi-phase field (MPF) model. Subsequently, the model is utilized to investigate the dendrite morphology transition and primary dendritic arm spacing (PDAS). It is found that the velocity dependent solute partition and the resulting changes in constitutional undercooling strongly influence the estimated morphology region and PDAS. Moreover, the segregation and microstructure evolution during the rapid solidification were studied. And the results revealed that free dendrites lead to significant changes in microstructure and segregation under the influence of non-equilibrium effects. This work illustrates the great potential of the proposed model in simulating dendrites and microstructure evolution under a wide range of solidification conditions. Its suitability for extreme conditions and non-equilibrium solidification can contribute to the understanding of microstructure formation patterns and solute segregation in rapid solidification.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"246 ","pages":"Article 113362"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007378","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A lattice Boltzmann model (LBM) with sharp interface tracking is developed to simulate the motion and growth of dendrites in non-equilibrium solidification of alloys. The model is validated through comparative analysis with the drafting-kissing-tumbling (DKT) phenomena of two and three particles and the continuous growth model (CGM), and demonstrates its computational efficiency advantage without compromising accuracy by comparison with the multi-phase field (MPF) model. Subsequently, the model is utilized to investigate the dendrite morphology transition and primary dendritic arm spacing (PDAS). It is found that the velocity dependent solute partition and the resulting changes in constitutional undercooling strongly influence the estimated morphology region and PDAS. Moreover, the segregation and microstructure evolution during the rapid solidification were studied. And the results revealed that free dendrites lead to significant changes in microstructure and segregation under the influence of non-equilibrium effects. This work illustrates the great potential of the proposed model in simulating dendrites and microstructure evolution under a wide range of solidification conditions. Its suitability for extreme conditions and non-equilibrium solidification can contribute to the understanding of microstructure formation patterns and solute segregation in rapid solidification.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.