{"title":"An integrated dynamic modeling workflow for acid gas and CO2 geologic storage screening in saline aquifers with faults: A case study in Western Canada","authors":"Alireza Qazvini Firouz , Benyamin Yadali Jamaloei , Alejandro Duvan Lopez Rojas","doi":"10.1016/j.ijggc.2024.104258","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the feasibility of storing the acid gas produced from the oil and gas facilities in Southern Saskatchewan into the Basal Sand aquifer using a coupled wellbore-aquifer-compositional reservoir model. The simulations investigate the pressure change around the fault in proximity of the primary storage location incorporating the influence of reservoir permeability, fault transmissibility, and wellbore configuration, on the factors critical to safe and efficient storage, such as plume migration, pressure changes, and CO<sub>2</sub> storage capacity. A compositional fluid model created using an equation of state was integrated into the reservoir model. Simultaneous incorporation of fault transmissibility, phase solubility, water salinity, temporal in-situ hysteresis and structural trapping, and in-situ compositional tracking of individual gas components is considered as the main novelty of this work. The main challenge of the study was the lack of available data to characterize the aquifer. To this end, a comprehensive workflow of reservoir studies and modeling was applied to reduce the uncertainties and evaluate the site selection. The Basal sand scoping models reveal that the aquifer is expected to handle the required disposal volume given its extent. The injected acid gas plume migrates laterally and preferentially towards the northwest, away from the fault, owing to the aquifer's geological structure. CO<sub>2</sub> remains entirely in the supercritical state, offering storage advantages due to its lower volume. The reservoir permeability significantly impacts the pressure patterns with lower permeability formations triggering higher wellhead injection pressures. Substantial pressure increases around the sealing fault can be observed. Pressure changes of 110 kPa (16 psi) to over 400 kPa (58 psi) were observed at the fault segment after 20 years of continuous gas injection for the expected range of reservoir properties. Mitigation strategies to minimize the increase in fault pressure entail relocating the injection site away from the fault or utilizing a horizontal well trajectory and using an observation well near the fault for monitoring any pressure buildup and slippage.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"138 ","pages":"Article 104258"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624002019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the feasibility of storing the acid gas produced from the oil and gas facilities in Southern Saskatchewan into the Basal Sand aquifer using a coupled wellbore-aquifer-compositional reservoir model. The simulations investigate the pressure change around the fault in proximity of the primary storage location incorporating the influence of reservoir permeability, fault transmissibility, and wellbore configuration, on the factors critical to safe and efficient storage, such as plume migration, pressure changes, and CO2 storage capacity. A compositional fluid model created using an equation of state was integrated into the reservoir model. Simultaneous incorporation of fault transmissibility, phase solubility, water salinity, temporal in-situ hysteresis and structural trapping, and in-situ compositional tracking of individual gas components is considered as the main novelty of this work. The main challenge of the study was the lack of available data to characterize the aquifer. To this end, a comprehensive workflow of reservoir studies and modeling was applied to reduce the uncertainties and evaluate the site selection. The Basal sand scoping models reveal that the aquifer is expected to handle the required disposal volume given its extent. The injected acid gas plume migrates laterally and preferentially towards the northwest, away from the fault, owing to the aquifer's geological structure. CO2 remains entirely in the supercritical state, offering storage advantages due to its lower volume. The reservoir permeability significantly impacts the pressure patterns with lower permeability formations triggering higher wellhead injection pressures. Substantial pressure increases around the sealing fault can be observed. Pressure changes of 110 kPa (16 psi) to over 400 kPa (58 psi) were observed at the fault segment after 20 years of continuous gas injection for the expected range of reservoir properties. Mitigation strategies to minimize the increase in fault pressure entail relocating the injection site away from the fault or utilizing a horizontal well trajectory and using an observation well near the fault for monitoring any pressure buildup and slippage.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.