Kinetic and thermodynamic analysis of the PET-date seed mixture co-pyrolysis using Coats-Redfern method

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Radwan Saad Allah Nounou , Ibrahim Abdelfadeel Shaban , Labeeb Ali , Mohammednoor Altarawneh , Mahmoud Elgendi
{"title":"Kinetic and thermodynamic analysis of the PET-date seed mixture co-pyrolysis using Coats-Redfern method","authors":"Radwan Saad Allah Nounou ,&nbsp;Ibrahim Abdelfadeel Shaban ,&nbsp;Labeeb Ali ,&nbsp;Mohammednoor Altarawneh ,&nbsp;Mahmoud Elgendi","doi":"10.1016/j.renene.2024.121524","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on improving the polyethylene terephthalate (PET) pyrolysis outcome by incorporating date pits in a balanced 50–50 mixture. The effect of date pit addition on the co-pyrolytic process is determined via thermal analysis using the Coats-Redfern method, which provides an estimation of the activation energy and the pre-exponential factor of the PET-Date mixture. The results demonstrate that the majority of the reaction mechanisms exhibit enhanced performance for the modified mixture, requiring 70 % less reaction energy on average. Hence, a positive effect is observed on the PET pyrolysis, thus highlighting its potential for biomass incorporation. This study provides valuable insights into optimising the co-pyrolytic processes for sustainable waste management and resource utilization practices.</div></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124015921","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on improving the polyethylene terephthalate (PET) pyrolysis outcome by incorporating date pits in a balanced 50–50 mixture. The effect of date pit addition on the co-pyrolytic process is determined via thermal analysis using the Coats-Redfern method, which provides an estimation of the activation energy and the pre-exponential factor of the PET-Date mixture. The results demonstrate that the majority of the reaction mechanisms exhibit enhanced performance for the modified mixture, requiring 70 % less reaction energy on average. Hence, a positive effect is observed on the PET pyrolysis, thus highlighting its potential for biomass incorporation. This study provides valuable insights into optimising the co-pyrolytic processes for sustainable waste management and resource utilization practices.
使用 Coats-Redfern 方法对 PET-date 种子混合物共热解进行动力学和热力学分析
本研究的重点是通过在 50-50 平衡混合物中加入枣核来改善聚对苯二甲酸乙二酯(PET)热解结果。通过使用 Coats-Redfern 方法进行热分析,确定了加入枣核对共热解过程的影响,从而估算出 PET-Date 混合物的活化能和预指数。结果表明,改性混合物的大多数反应机理都表现出更高的性能,所需的反应能量平均降低了 70%。因此,对 PET 高温分解产生了积极的影响,从而凸显了其在生物质掺入方面的潜力。这项研究为优化可持续废物管理和资源利用的共热解过程提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信