Shahid Ullah Khan , Minchao Qian , Shengting Li , Yonghai Fan , Hui Wang , Wei Chang , Osama Alam , Sumbul Saeed , Kun Lu
{"title":"Unveiling CRISPR/Cas in rapeseed: Triumphs, trials, and tomorrow","authors":"Shahid Ullah Khan , Minchao Qian , Shengting Li , Yonghai Fan , Hui Wang , Wei Chang , Osama Alam , Sumbul Saeed , Kun Lu","doi":"10.1016/j.ncrops.2024.100045","DOIUrl":null,"url":null,"abstract":"<div><div>The clustered regularly interspaced short palindromic repeats (CRISPR) genome-editing technique has revolutionized our understanding of plant genomes. Over a decade ago, scientists began using CRISPR/Cas to rapidly breed plant species, model and non-model crops, and modify plant genomes to study specific genes and metabolic pathways. While the CRISPR/Cas system holds immense potential for genome editing, numerous obstacles may prevent it from fully realizing this potential. This paper reviews the history and current state of CRISPR/Cas9-mediated gene editing technology in rapeseed. Our discussion focuses on the advancements CRISPR/Cas9 has made in enhancing plant characteristics such as yield traits, quality, and disease resistance. To provide comprehensive insights for research focused on gene function studies or genetic improvement through genome editing technology, we review the latest progress in plant applications using emerging precise genome editing technologies and discuss the limitations, including technological hurdles. We also explore CRISPR/Cas applications in oilseed rape to achieve improved results within this framework. This review covers genes controlling abiotic stresses in rapeseed at various developmental stages and examines related literature on CRISPR/Cas technology applications. While much remains to be discovered, the existing background information will guide future investigations into genetic enhancement using CRISPR, beyond what is discussed here. We believe this literature will inspire deep interest and create new opportunities for scientists working on rapeseed improvement.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) genome-editing technique has revolutionized our understanding of plant genomes. Over a decade ago, scientists began using CRISPR/Cas to rapidly breed plant species, model and non-model crops, and modify plant genomes to study specific genes and metabolic pathways. While the CRISPR/Cas system holds immense potential for genome editing, numerous obstacles may prevent it from fully realizing this potential. This paper reviews the history and current state of CRISPR/Cas9-mediated gene editing technology in rapeseed. Our discussion focuses on the advancements CRISPR/Cas9 has made in enhancing plant characteristics such as yield traits, quality, and disease resistance. To provide comprehensive insights for research focused on gene function studies or genetic improvement through genome editing technology, we review the latest progress in plant applications using emerging precise genome editing technologies and discuss the limitations, including technological hurdles. We also explore CRISPR/Cas applications in oilseed rape to achieve improved results within this framework. This review covers genes controlling abiotic stresses in rapeseed at various developmental stages and examines related literature on CRISPR/Cas technology applications. While much remains to be discovered, the existing background information will guide future investigations into genetic enhancement using CRISPR, beyond what is discussed here. We believe this literature will inspire deep interest and create new opportunities for scientists working on rapeseed improvement.